Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Catal ; 14(9): 6799-6806, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38721378

RESUMEN

Plasmonic photocatalysis demonstrates great potential for efficiently harnessing light energy. However, the underlying mechanisms remain enigmatic due to the transient nature of the reaction processes. Typically, plasmonic photocatalysis relies on the excitation of surface plasmon resonance (SPR) in plasmonic materials, such as metal nanoparticles, leading to the generation of high-energy or "hot electrons", albeit accompanied by photothermal heating or Joule effect. The ability of hot electrons to participate in chemical reactions is one of the key mechanisms, underlying the enhanced photocatalytic activity observed in plasmonic photocatalysis. Interestingly, surface-enhanced Raman scattering (SERS) spectroscopy allows the analysis of chemical reactions driven by hot electrons, as both SERS and hot electrons stem from the decay of SPR and occur at the hot spots. Herein, we propose a highly efficient SERS substrate based on cellulose paper loaded with either Ag nanoplates (Ag NPs) or AgPd hollow nanoplates (AgPd HNPs) for the in situ monitoring of C-C homocoupling reactions. The data analysis allowed us to disentangle the impact of hot electrons and the Joule effect on plasmon-enhanced photocatalysis. Computational simulations revealed an increase in the rate of excitation of hot carriers from single/isolated AgPd HNPs to an in-plane with a vertical stacking assembly, suggesting its promise as a photocatalyst under broadband light. In addition, the results suggest that the incorporation of Pd into an alloy with plasmonic properties may enhance its catalytic performance under light irradiation due to the collection of plasmon-excitation-induced hot electrons. This work has demonstrated the performance-oriented synthesis of hybrid nanostructures, providing a unique route to uncover the mechanism of plasmon-enhanced photocatalysis.

2.
J Phys Chem Lett ; 15(9): 2550-2556, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38416028

RESUMEN

Chiral plasmonic nanostructures can produce strong chiral optical responses and have potential applications in photonics. Experimentally, metallic nanoparticle helices have been synthesized to achieve strong chiral responses. Strong coupling effects between the quantum emitters and the plasmon have attracted significant attention in the past decade and have been recently extended to the chiral plasmon of nanostructures. However, the strong coupling between molecules and metallic nanosphere helices has not been reported yet. In this article we study theoretically such an effect and examine the modulation of chiral and coupling effects by illumination light and molecular layer thickness. Our study may guide further experimental studies.

3.
Biosens Bioelectron ; 248: 115993, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38183788

RESUMEN

Simultaneous, reliable, and ultra-sensitive analysis of promising miRNA biomarkers of colorectal cancer (CRC) in serum is critical for early diagnosis and prognosis of CRC. In this work, we proposed a novel 3D hierarchic assembly clusters-based SERS strategy with dual enrichment and enhancement designed for the ultrasensitive and quantitative analysis of two upregulated CRC-related miRNAs (miR-21 and miR-31). The biosensor contains the following: (1) SERS probe, Au nanocage@Au nanoparticles (AuNC@Au NPs) labeled with Raman reporters (RaRs). (2) magnetic capture unit, Ag-coated Fe3O4 magnetic nanoparticles (AgMNPs) modified with internal standard (IS). (3) signal amplify probes (SA probes) for the formation of hierarchic assembly clusters. Based on this sensing strategy, the intensity ratio IRaRs/IIS with Lg miRNAs presents a wide linear range (10 aM-100 pM) with a limit of detection of 3.46 aM for miR-21, 6.49 aM for miR-31, respectively. Moreover, the biosensor shows good specificity and anti-interference ability, and the reliability and repeatability of the strategy were then verified by practical detection of clinical serum. Finally, the biosensor can distinguish CRC cancer subjects from normal ones and guide the distinct tumor, lymph node, and metastasis (TNM) stages. Overall, benefiting from the face-to-face coupling of hierarchic assembly clusters, rapid magnetic enrichment and IS signal calibration of AgMNPs, the established biosensor achieves ultra-sensitive and simultaneous detection of dual miRNAs and opens potential avenues for prediction and staging of CRC.


Asunto(s)
Técnicas Biosensibles , Neoplasias Colorrectales , Nanopartículas del Metal , MicroARNs , Humanos , MicroARNs/análisis , Oro , Reproducibilidad de los Resultados , Espectrometría Raman , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Límite de Detección
4.
Adv Sci (Weinh) ; 11(13): e2305797, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38268241

RESUMEN

Chiral CDots (c-CDots) not only inherit those merits from CDots but also exhibit chiral effects in optical, electric, and bio-properties. Therefore, c-CDots have received significant interest from a wide range of research communities including chemistry, physics, biology, and device engineers. They have already made decent progress in terms of synthesis, together with the exploration of their optical properties and applications. In this review, the chiroptical properties and chirality origin in extinction circular dichroism (ECD) and circularly polarized luminescence (CPL) of c-CDots is briefly discussed. Then, the synthetic strategies of c-CDots is summarized, including one-pot synthesis, post-functionalization of CDots with chiral ligands, and assembly of CDots into chiral architectures with soft chiral templates. Afterward, the chiral effects on the applications of c-CDots are elaborated. Research domains such as drug delivery, bio- or chemical sensing, regulation of enzyme-like catalysis, and others are covered. Finally, the perspective on the challenges associated with the synthetic strategies, understanding the origin of chirality, and potential applications is provided. This review not only discusses the latest developments of c-CDots but also helps toward a better understanding of the structure-property relationship along with their respective applications.

6.
Small ; 19(26): e2205187, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36967558

RESUMEN

Chiral transition metal oxide nanoparticles (CTMOs) are attracting a lot of attention due to their fascinating properties. Nevertheless, elucidating the chirality induction mechanism often remains a major challenge. Herein, the synthesis of chiral cobalt oxide nanoparticles mediated by histidine (Co3 O4 @L-His and Co3 O4 @D-His for nanoparticles synthesized in the presence of L- and D-histidine, respectively) is investigated. Interestingly, these CTMOs exhibit remarkable and tunable chiroptical properties. Their analysis by x-ray photoelectron, Fourier transform infrared, and ultraviolet-visible absorption spectroscopy indicates that the ratio of Co2+ /Co3+ and their interactions with the imidazole groups of histidine are behind their chiral properties. In addition, the use of chiral Co3 O4 nanoparticles for the development of sensitive, rapid, and enantioselective circular dichroism-based sensors is demonstrated, allowing direct molecular detection and discrimination between cysteine or penicillamine enantiomers. The circular dichroism response of the chiral Co3 O4 exhibits a limit of detection and discrimination of cysteine and penicillamine enantiomers as low as 10 µm. Theoretical calculations suggest that the ligand exchange and the coexistence of both species adsorbed on the oxide surface are responsible for the enantiomeric discrimination. This research will enrich the synthetic approaches to obtain CTMOs and enable the extension of the applications and the discovery of new chiroptical properties.

7.
Small ; 19(8): e2205924, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36509680

RESUMEN

Glucose monitoring is essential to evaluate the degree of glucose metabolism disorders. The enzymatic determination has been the most widely used method in glucose detection because of its high efficiency, accuracy, and sensitivity. Noble metal nanomaterials (NMs, i.e., Au, Ag, Pt, and Pd), inheriting their excellent electronic, optical, and enzyme-like properties, are classified as noble metal nanozymes (NMNZs). As the NMNZs are often involved in two series of reactions, the oxidation of glucose and the chromogenic reaction of peroxide, here the chemical mechanism by employing NMNZs with glucose oxidase (GOx) and peroxidase (POD) mimicking activities is briefly summarized first. Subsequently, the regulation strategies of the GOx-like, POD-like and tandem enzyme-like activities of NMNZs are presented in detail, including the materials, size, morphology, composition, and the reaction condition of the representative NMs. In addition, in order to further mimic the enantioselectivity of enzyme, the design of NMNZs with enantioselective recognition of d-glucose and l-glucose by using different chiral compounds (DNA, amino acids, and cyclodextrins) and molecular imprinting is further described in this review. Finally, the feasible solutions to the existing challenges and a vision for future development possibilities are discussed.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Glucosa , Estereoisomerismo , Glucemia , Metales , Glucosa Oxidasa/metabolismo , Antioxidantes
8.
Adv Mater ; 35(1): e2208299, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36239273

RESUMEN

A robust and reproducible methodology to prepare stable inorganic nanoparticles with chiral morphology may hold the key to the practical utilization of these materials. An optimized chiral growth method to prepare fourfold twisted gold nanorods is described herein, where the amino acid cysteine is used as a dissymmetry inducer. Four tilted ridges are found to develop on the surface of single-crystal nanorods upon repeated reduction of HAuCl4 , in the presence of cysteine as the chiral inducer and ascorbic acid as a reducing agent. From detailed electron microscopy analysis of the crystallographic structures, it is proposed that the dissymmetry results from the development of chiral facets in the form of protrusions (tilted ridges) on the initial nanorods, eventually leading to a twisted shape. The role of cysteine is attributed to assisting enantioselective facet evolution, which is supported by density functional theory simulations of the surface energies, modified upon adsorption of the chiral molecule. The development of R-type and S-type chiral structures (small facets, terraces, or kinks) would thus be non-equal, removing the mirror symmetry of the Au NR and in turn resulting in a markedly chiral morphology with high plasmonic optical activity.


Asunto(s)
Nanopartículas , Nanotubos , Cisteína/química , Rotación Óptica , Oro/química , Nanotubos/química , Nanopartículas/química
9.
ACS Nano ; 16(12): 19789-19809, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36454684

RESUMEN

Chiral Au nanorods (c-Au NRs) with diverse architectures constitute an interesting nanospecies in the field of chiral nanophotonics. The numerous possible plasmonic behaviors of Au NRs can be coupled with chirality to initiate, tune, and amplify their chiroptical response. Interdisciplinary technologies have boosted the development of fabrication and applications of c-Au NRs. Herein, we have focused on the role of chirality in c-Au NRs which helps to manipulate the light-matter interaction in nontraditional ways. A broad overview on the chirality origin, chirality transfer, chiroptical activities, artificially synthetic methodologies, and circularly polarized applications of c-Au NRs will be summarized and discussed. A deeper understanding of light-matter interaction in c-Au NRs will help to manipulate the chirality at the nanoscale, reveal the natural evolution process taking place, and set up a series of circularly polarized applications.

10.
Biomacromolecules ; 23(11): 4872-4882, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36286997

RESUMEN

Gel polymers are widely used in different fields due to their unique properties, especially in flexible electronic devices. However, developing multienvironmentally-tolerant (antifreezing, antidrying, and solvent-resistant) gel polymer-based soft electronics is still a significant challenge. Herein, a binary solvent system-based versatile organohydrogel is designed and successfully prepared, which exhibits superior stretchability, favorable self-adhesive properties, prominent temperature tolerance, and excellent solvent-resistant capabilities. Furthermore, the as-assembled organohydrogel-based sensor demonstrates a satisfied sensitivity (GF = 1.8), wide strain range (5-500%), and outstanding human motion detection. Meanwhile, the obtained organohydrogel can also serve as an all-weather sensor for achieving precise and reliable mechanical sensing in a wide temperature range from -50 to 50 °C and diverse liquid media consisting of water, toluene, and carbon tetrachloride. Interestingly, the organohydrogel displays a repeatable transmittance change behavior in water and dimethyl sulfoxide, based on this feature, which could realize the functional applications for recording and erasing information. It is envisioned that these superior performances render the as-prepared organohydrogel suitable to develop future advanced soft electronics with multienvironmental tolerance.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Carragenina , Solventes , Movimiento (Física) , Agua , Hidrogeles
11.
Nanoscale Horiz ; 7(9): 941-1015, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35770698

RESUMEN

A variety of colloidal chemical approaches has been developed in the last few decades for the controlled synthesis of nanostructured materials in either water or organic solvents. Besides the precursors, the solvents, reducing agents, and the choice of surfactants are crucial for tuning the composition, morphology and other properties of the resulting nanoparticles. The ligands employed include thiols, amines, carboxylic acids, phosphines and phosphine oxides. Generally, adding a single ligand to the reaction mixture is not always adequate to yield the desired features. In this review, we discuss in detail the role of the oleic acid/oleylamine ligand pair in the chemical synthesis of nanoparticles. The combined use of these ligands belonging to two different categories of molecules aims to control the size and shape of nanoparticles and prevent their aggregation, not only during their synthesis but also after their dispersion in a carrier solvent. We show how the different binding strengths of these two molecules and their distinct binding modes on specific facets affect the reaction kinetics toward the production of nanostructures with tailored characteristics. Additional functions, such as the reducing function, are also noted, especially for oleylamine. Sometimes, the carboxylic acid will react with the alkylamine to form an acid-base complex, which may serve as a binary capping agent and reductant; however, its reducing capacity may range from lower to much lower than that of oleylamine. The types of nanoparticles synthesized in the simultaneous presence of oleic acid and oleylamine and discussed herein include metal oxides, metal chalcogenides, metals, bimetallic structures, perovskites, upconversion particles and rare earth-based materials. Diverse morphologies, ranging from spherical nanoparticles to anisotropic, core-shell and hetero-structured configurations are presented. Finally, the relation between tuning the resulting surface and volume nanoparticle properties and the relevant applications is highlighted.


Asunto(s)
Nanopartículas , Ácido Oléico , Aminas/química , Ligandos , Nanopartículas/química , Ácido Oléico/química , Óxidos , Solventes/química
12.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35564107

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) technology has been regarded as a most efficient and sensitive strategy for the detection of pollutants at ultra-low concentrations. Fabrication of SERS substrates is of key importance in obtaining the homogeneous and sensitive SERS signals. Cellulose filter papers loaded with plasmonic metal NPs are well known as cost-effective and efficient paper-based SERS substrates. In this manuscript, face-to-face assembly of silver nanoplates via solvent-evaporation strategies on the cellulose filter papers has been developed for the SERS substrates. Furthermore, these developed paper-based SERS substrates are utilized for the ultra-sensitive detection of the rhodamine 6G dye and thiram pesticides. Our theoretical studies reveal the creation of high density hotspots, with a huge localized and enhanced electromagnetic field, near the corners of the assembled structures, which justifies the ultrasensitive SERS signal in the fabricated paper-based SERS platform. This work provides an excellent paper-based SERS substrate for practical applications, and one which can also be beneficial to human health and environmental safety.

13.
Mater Horiz ; 8(3): 1037-1046, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821334

RESUMEN

Wearable smart devices should be flexible and functional to imitate the warmth and sensing functions of human skin or animal fur. Despite the recent great progress in wearable smart devices, it is still challenging to achieve the required multi-functionality. Here, stretchable hollow-porous fibers with self-warming ability are designed, and the properties of electrical heating, strain sensing, temperature sensing and pressure sensing are achieved. The hollow-porous TPU fiber possesses an ultra-high stretchability (1468%), and the textiles woven from the fibers present a splendid thermal insulation property (the absolute value difference in temperature |ΔT| = 68.5 and 44 °C at extreme temperatures of 115 and -40.0 °C). Importantly, after conductive filler decoration, the fiber-based strain sensor exhibits one of the highest reported gauge factor (2.3 × 106) towards 100% strain in 7200 working stretch-release cycles. A low detection limit of 0.5% strain is also achieved. Besides, the fibers can be heated to 40 °C in 18 s at a small voltage of 2 V as an electrical heater. The assembled thermal sensors can monitor the temperature from 30 to 90 °C in real time, and the fiber-based capacitive type pressure sensor exhibits good sensing performance under force from 1 to 25 N. The hollow-porous fiber based all-in-one integrated wearable systems illustrate promising prospects for next generation electronic skins to detect human motions and body temperature with thermal therapy and inherent self-warming ability.


Asunto(s)
Textiles , Dispositivos Electrónicos Vestibles , Animales , Conductividad Eléctrica , Electrónica , Humanos , Porosidad
14.
Chem Soc Rev ; 50(6): 3738-3754, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33586721

RESUMEN

From a geometrical perspective, a chiral object does not have mirror planes or inversion symmetry. It exhibits the same physical properties as its mirror image (enantiomer), except for the chiroptical activity, which is often the opposite. Recent advancements have identified particularly interesting implications of chirality on the optical properties of metal nanoparticles, which are intimately related to localized surface plasmon resonance phenomena. Although such resonances are usually independent of the circular polarization of light, specific strategies have been applied to induce chirality, both in assemblies and at the single-particle level. In this tutorial review, we discuss the origin of plasmonic chirality, as well as theoretical models that have been proposed to explain it. We then summarise recent developments in the synthesis of discrete nanoparticles with plasmonic chirality by means of wet-chemistry methods. We conclude with a discussion of promising applications for discrete chiral nanoparticles. We expect this tutorial review to be of interest to researchers from a wide variety of disciplines where chiral plasmonics can be exploited at the nanoparticle level, such as chemical sensing, photocatalysis, photodynamic or photothermal therapies, etc.

15.
Chem Commun (Camb) ; 56(93): 14693-14696, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33165479

RESUMEN

Carnitine functions as a mesoporogen in LTA zeolite synthesis whereas its structural analogue acetylcarnitine acts as a crystal growth modifier. An array of experimental and theoretical studies reveal a remarkable effect of molecular conformation on the actual roles of organic functional groups during zeolite crystallization.

16.
Nanotechnology ; 31(50): 505605, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33021219

RESUMEN

Y-based fluorides have been recognized as most efficient host materials for upconversion photoluminescence (UC-PL). Herein, we have produced a series of Yb/Er doped Y-based fluorides with specific crystal structures, shapes and sizes. The selective growth process is governed by our pre-designed surfactant 4, 4'-((2,5-bi's (2-(diethylamino) ethoxy) -1,4-phenylene) bis (ethyne-2,1-diyl)) dibenzoic acid (DBA) and selective solvents. It is shown that highly pure hexagonal microprisms and cubic microspheres of NaYF4: Yb/Er could be selectively grown in water at low and high content of DBA, respectively, while only orthorhombic nanowires and microflowers of YF3: Yb/Er could be obtained in ethanol. Finally, all these materials obtained exhibit strong UC-PL signal while the UC emission intensity of the NaYF4: Yb/Er hexagonal microprisms is much higher than those of the cubic microspheres and orthorhombic YF3 nanowires and microflowers. This work provides a novel method for selective crystal growth of Y-based fluorides with specific shape, size, crystal phase and highly UC-PL efficiency by breaking the intrinsic limitation of crystal growth habit, which could be possibly extended to the controlled synthesis of other related materials.

17.
Small ; 16(38): e2002588, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32762017

RESUMEN

Binary, ternary, and other high-order plasmonic heteromers possess remarkable physical and chemical properties, enabling them to be used in numerous applications. The seed-mediated approach is one of the most promising and versatile routes to produce plasmonic heteromers. Selective growth of one or multiple domains on desired sites of noble metal, semiconductor, or magnetic seeds would form desired heteromeric nanostructures with multiple functionalities and synergistic effects. In this work, the challenges for the synthetic approaches are discussed with respect to tuning the thermodynamics, as well as the kinetic properties (e.g., pH, temperature, injection rate, among others). Then, plasmonic heteromers with their structure advantages displaying unique activities compared to other hybrid nanostructures (e.g., core-shell, alloy) are highlighted. Some of the main most recent applications of plasmonic heteromers are also presented. Finally, perspectives for further exploitation of plasmonic heteromers are demonstrated. The goal of this work is to provide the current know-how on the synthesis routes of plasmonic heteromers in a summarized manner, so as to achieve a better understanding of the resulting properties and to gain an improved control of their performances and extend their breadth of applications.

18.
ACS Appl Mater Interfaces ; 12(18): 21133-21142, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32286058

RESUMEN

Hot electrons generated by photoinduced plasmon decay from a plasmonic metal surface can reduce 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP). Compared to the reduction with a reducing agent such as sodium borohydride, surface-enhanced Raman scattering (SERS) measurements were performed here to elucidate the complex molecular mechanism of the reduction in the presence of halide ions and hydrogen ions. The SERS measurements were performed using a simply prepared silver plasmonic film (AgPF), which enables monitoring of the reaction under different conditions at a solid-liquid surface and eliminates the need for the use of a reducing agent. As the concentration of H+ and Cl- could be controlled, the observation of the reaction under a systematic set of conditions was possible. Based on the kinetic traces of the intermediates, a reaction mechanism for the 4-NTP to 4-ATP reduction is suggested. Rate constants for the individual reactions are presented that fit the measured kinetic traces, and the role of hydrogen in each reaction step is characterized. This work provides clarification on the molecular transformation directly using protons as the hydrogen source and demonstrates an effective method of applying a simple and low-cost silver surface catalyst for SERS studies. Moreover, the monitoring of Cl--concentration-dependent spectra provides insight into the hot-electron conversion process during the photoreduction and strongly supports the formation of AgCl for the activation of H+.

19.
Angew Chem Int Ed Engl ; 57(50): 16452-16457, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30375752

RESUMEN

The synthesis of discrete nanostructures with a strong, persistent, stable plasmonic circular dichroism (PCD) signal is challenging. We report a seed-mediated growth approach to obtain discrete Au nanorods with high and stable chiroptical responses (c-Au NRs) in the visible to near-IR region. The morphology of the c-Au NRs was governed by the concentration of l- or d-cysteine used. The amino acids encapsulated within the discrete gold nanostructure enhance their PCD signal, attributed to coupling of dipoles of chiral molecules with the near-field induced optical activity at the hot spots inside the c-Au NRs. The stability of the PCD signal and biocompatibility of c-Au NRs was improved by coating with silica or protein corona. Discrete c-Au NR@SiO2 with Janus or core-shell configurations retained their PCD signal even in organic solvents. A side-by-side assembly of c-Au NRs induced by l-glutathione led to further PCD signal enhancement, with anisotropic g factors as high as 0.048.


Asunto(s)
Materiales Biocompatibles/química , Cisteína/química , Oro/química , Nanotubos/química , Nanotubos/ultraestructura , Dicroismo Circular , Glutatión/química , Nanotecnología , Dióxido de Silicio/química , Estereoisomerismo
20.
Nanoscale ; 9(43): 16645-16651, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-28825072

RESUMEN

Shape control in metal-organic frameworks still remains a challenge. We propose a strategy based on the capping agent modulator method to control the shape of ZIF-8 nanocrystals. This approach requires the use of a surfactant, cetyltrimethylammonium bromide (CTAB), and a second capping agent, tris(hydroxymethyl)aminomethane (TRIS), to obtain ZIF-8 nanocrystals with morphology control in aqueous media. Semiempirical computational simulations suggest that both shape-inducing agents adsorb onto different surface facets of ZIF-8, thereby slowing down their crystal growth rates. While CTAB molecules preferentially adsorb onto the {100} facets, leading to ZIF-8 particles with cubic morphology, TRIS preferentially stabilizes the {111} facets, inducing the formation of octahedral crystals. Interestingly, the presence of both capping agents leads to nanocrystals with irregular shapes and higher index facets, such as hexapods and burr puzzles. Additionally, the combination of ZIF-8 nanocrystals with other materials is expected to impart additional properties due to the hybrid nature of the resulting nanocomposites. In the present case, the presence of CTAB and TRIS molecules as capping agents facilitates the synthesis of metal nanoparticle@ZIF-8 nanocomposites, due to synergistic effects which could be of use in a number of applications such as catalysis, gas sensing and storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...