Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 349: 140901, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065267

RESUMEN

A 20-day sludge biodrying process was coupled with photocatalysis to improve biodrying efficiency and investigate the effect of photocatalysis on biodegradation. After biodrying, the moisture content in the coupled photocatalytic group (TCA) and the control group (TUCA) decreased from 63.61% to 50.82% and 52.94%, respectively, and the volatile solids content decreased from 73.18% to 63.42% and 64.39%, respectively. Neutral proteinase activity decreased by 9.38% and 28.69%, and lipase activity decreased by 6.12% and 26.17%, respectively, indicating that photocatalysis helped maintain neutral proteinase and lipase activities. The Chao1 and Shannon indices showed that photocatalysis increased fungal diversity and reduced bacterial richness and diversity. The ß diversity clustering analysis indicated that the bacterial community structure during the thermophilic phase in TCA differed from that in TUCA. The Kyoto Encyclopedia of Genes and Genomes annotation showed that photocatalysis has the potential to promote the synthesis and degradation of ketone bodies. Biodrying coupled with photocatalysis can improve the dewatering of sludge without negatively affecting biodegradation.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Biodegradación Ambiental , Péptido Hidrolasas , Lipasa
2.
J Environ Manage ; 345: 118590, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499415

RESUMEN

The efficiency of sludge dewatering is limited by extracellular polymeric substances (EPS) during biodrying. This study investigated the effect of photocatalysis-mediated EPS degradation on sludge dewatering performance during the sludge biodrying process. The photocatalysis of municipal sludge was first carried out to choose a cost-efficient catalyst. Then sludge biodrying tests were performed using TiO2-coated amendment (TCA) and uncoated amendment (TUCA) as the control. Municipal sludge photocatalysis results showed that using TiO2 could efficiently degrade carbohydrates and proteins in the EPS within 60 min. After 20-day biodrying, photocatalysis significantly promoted a reduction in the moisture content and EPS by 17.64% and 6.88%, respectively. The surface-enhanced Raman scattering (SERS) intensities of the C-C-O symmetric stretching vibration peak of D-lactose and the C-S stretching vibration peak of cysteine were significantly decreased by approximately 33.19% and 44.76%, respectively, indicating that photocatalysis indeed promoted the reduction of polysaccharides and cysteine in the EPS, especially after the thermophilic phase. The hydrophilic amino acid content decreased by 23.02%, verifying that photocatalysis could improve EPS hydrophobicity. Consequently, municipal sludge biodrying coupled with photocatalysis promotes sludge EPS degradation and enhances sludge dewaterability, improving the efficiency of sludge biodrying.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Cisteína , Agua/química
3.
Int J Phytoremediation ; 25(3): 339-349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35689343

RESUMEN

Intercropping a Cd-accumulator with economically valuable crops is common in slightly or moderately Cd-polluted farmland soils. A field experiment was conducted to evaluate the effects of water-soluble chitosan (WSC) on the growth and Cd uptake of the Cd-accumulator Hylotelephium spectabile and soybean (Glycine max) during a co-cultivation in Cd-contaminated agricultural soil (WSC, 0 and 10 g·m-2). The results indicated that soybean yields were highest in response to the intercropping and WSC treatment. The results from the field trials generally showed that intercropping and WSC treatments significantly decreased Cd concentrations in inedible parts of soybean by 42.9-72.1% (except for stems), in the meantime, increased 95.8%-334.6% in shoot and root tissues of H. spectabile compared with the control (p < 0.05). The data revealed that Cd uptake was highest for H. spectabile during the intercropping and WSC treatment. The application of WSC in the intercropping system significantly increased the uptake of Cd by H. spectabile, but not by soybean. The findings of this study suggest that combining an intercropping system with a WSC treatment may be better for remediating Cd-contaminated soils than other methods involving the growth of a single hyperaccumulator.


This paper clearly focused on the accumulation and uptake of Cd in the system of intercropping of Cd-accumulator (Hylotelephium spectable) and soybean (Glycine max) grown in Cd-polluted farmland soils supplied with water-soluble chitosan (WSC) under field conditions. Some studies mainly focused on active agent to promote remediation efficiency of (hyper) accumulators. This study indicated that combining the intercropping system with WSC may be better for remediating Cd-contaminated soils than the methods involving a single hyperaccumulator.


Asunto(s)
Quitosano , Contaminantes del Suelo , Glycine max/fisiología , Cadmio , Suelo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Productos Agrícolas
4.
Huan Jing Ke Xue ; 43(9): 4779-4790, 2022 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-36096618

RESUMEN

In order to explore the distribution characteristics of heavy metal contamination of farmland soil surrounding Luancheng town, Shijiazhuang City, Henan province, the concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in the surface soil and crops were determined and assessed. The principal components were also analyzed for source apportionment. The heavy metal concentrations in crops were further detected, and the non-carcinogenic health risks in the study area were evaluated using the probabilistic risk assessment method, as to provide a theoretical basis for the treatment, prevention, and control of heavy metal pollution in farmland soil in Luancheng. According to the results, ω(Cd), ω(Cr), ω(Cu), ω(Pb), and ω(Zn) in the soils were 0.06-1.08, 22.14-473.47, 12.83-150.74, 10.75-577.72, and 62.23-652.78 mg·kg-1, which exceeded the standard with over-standard rates reaching 1.83%, 1.22%, 0.61%, 0.61%, and 1.22%, respectively. Further, Cd and Pb were transported into crops, in which Cd concentrations exceeded the standard in some corn samples, and Cd and Pb concentrations exceeded the standard in some wheat samples. The total non-carcinogenic health risks (TTHQ) to the human body caused by the consumption of heavy metals in corn grown in the study area were all less than 1, with no obvious negative effects, and TTHQ was higher than 1 in wheat, increasing the likelihood of negative impacts on the human body. With the influence of the distribution of pollution-related enterprises in the industrial zone, heavy metal concentrations were higher in the south, west, and middle directions of the study area. Among them, the study area soil was slightly contaminated by Cd (Level 1). Cd and Hg had a slight potential ecological risk (Level 2), whereas other heavy metals had low potential ecological risk (Level 1). In general, most of the surface cultivated soil was not obviously polluted by heavy metals in the study area. According to the PMF results and survey, we speculated that soil heavy metals mainly came from soil parent material (52.05%), artificial pollution sources (historical sewage irrigation and industrial manufacture) (32.98%), and atmospheric deposition (14.97%). To summarize, the study area should be divided into a priority protection category and safe utilization category. The input of pollution sources should be strictly controlled for the priority protection category, and alternative planting, rotating, and fallow should be implemented for the safe utilization category to reduce the risk of standard-exceeding agricultural products.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Cadmio , Productos Agrícolas , Monitoreo del Ambiente , Granjas , Humanos , Plomo , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
5.
Chemosphere ; 307(Pt 4): 135862, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35944670

RESUMEN

Biodrying is a treatment to remove moisture using bio-heat generated during organic degradation. Organic matter degradation and microbial metabolism were studied during the whole kitchen waste biodrying, using metagenomic analysis. After the 25-day biodrying process, carbohydrate, protein and lipid contents decreased by 83.7%, 27.8% and 79.3%, respectively, and their degradation efficiencies increased after the thermophilic phase. Lipase activity exceeded 10 mmol d-1 g-1 throughout biodrying. Cellulase and lipase activities recovered by 2.21% and 5.77%, respectively, after the thermophilic phase, while the protease activity had a maximum increment of 347%. Metabolic analysis revealed that carbohydrate, amino acid and lipid metabolism was possibly inhibited by the high temperature, but the relative abundances of related predicted functions recovered by more than 0.9%, 7% and 11%, respectively, by the end of biodrying. Protein function prediction suggests that ß-oxidation, fatty acid biosynthesis, and the degradation of cellulose and chitin were possibly enhanced during the thermophilic phase. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that leucine, isoleucine and lysine could ultimately degraded to acetyl-CoA. Weissella, Aeribacillus and Bacillus were the genera with the most enriched functional genes during the whole biodrying process. These findings help elucidate the microbial degradation processes during biodrying, which provides further scientific support for improving the application of biodrying products.


Asunto(s)
Celulasas , Aguas del Alcantarillado , Acetilcoenzima A , Carbohidratos , Celulosa , Quitina , Ácidos Grasos , Isoleucina , Leucina , Lipasa , Lípidos , Lisina , Péptido Hidrolasas , Aguas del Alcantarillado/química , Agua/química
6.
Waste Manag ; 126: 30-40, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33740711

RESUMEN

This research investigated a synthetic amendment to improve composting and resource recycling of pig manure and biogas residue. We further examined whether adding a synthetic amendment impacts the microbial ecosystem in the composted materials. Three mixing ratios were used to investigate composting performance: no synthetic amendment (T0), 5% synthetic amendment (T1), and 10% synthetic amendment (T2) (T1 and T2 were measured as a wet weight ratio). There were no significant differences in the fundamental characteristics between composting products in T0 and T1. The moisture content of composting material in T0, T1, and T2 significantly decreased from a baseline of approximately 65% to 35.5%, 37.3%, and 55.9%, respectively. Meanwhile, the germination index significantly increased to 111.6%, 155.6%, and 62.3%, respectively. When an optimal proportion of synthetic amendment was added, T1 showed high degree of humification, lignocellulase activities, and effective biodegradation. Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes were the dominant bacteria, while Ascomycota and Basidiomycota were the dominant fungi in all treatment groups. Amino sugar and nucleotide sugar metabolism, glycolysis, starch, and sucrose metabolism were among the primary pathways in predicted functions. The synthetic amendment can generate a mature composting product and can be reused or recycled to conserve resources.


Asunto(s)
Compostaje , Animales , Biocombustibles , Ecosistema , Estiércol , Suelo , Porcinos
7.
Huan Jing Ke Xue ; 42(2): 900-908, 2021 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-33742885

RESUMEN

In order to fully explore the spatial distribution of soil heavy metal contaminants in farmland soil surrounding a typical industrial area in Dakuai town, Xinxiang city, Henan Province, the concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn in the surface soil and within the soil profile were determined and assessed. The principal components were also analyzed for source apportionment to provide a theoretical basis for the control and prevention of heavy metal pollution. According to the results, the soils in the study area are severely contaminated by Cd and Cu and moderated contaminated by As due to the battery manufacture and Cu (e.g., pipe and wire) processing. The concentrations of Cd, Cu, and As in soils were (2.56±1.23) mg·kg-1, (205.58±157.49) mg·kg-1, and (15.27±4.14) mg·kg-1, respectively, which exceeds standards by 100%, 89.44%, and 3.40%, respectively. Accounting for the influence of pollution sources, terrain, runoff erosion, and prevailing wind direction, all heavy metal concentrations were higher in the south direction, lower in the north direction. The concentrations of Cd and Cu in soil profile samples decreased with depth, with highest concentrations at the surface, indicating the strong effect of industrial activities. Arsenic concentrations varied little with soil depth due to its strong migration ability in alkaline soil, again suggesting an industrial source. Among them, the soil of study area was severely contaminated by Cd and Cu (Level 5). Cd poses a severe potential ecological risk (Level 5) and Cu poses a medium risk (Level 2) in the study soils, while other heavy metals show low potential ecological risk (Level 1). The order of the risk identified was Cd > Cu > Ni > As > Pb > Cr > Zn. In addition, the combined potential ecological risk of heavy metals in the target area is severe. The principal component analysis showed that the high As, Cd, and Cu contents are mainly derived from industrial areas. Therefore, it is urgent to remediate Cd and Cu soil contamination in this area and implement precautions to limit As contamination.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Ciudades , Monitoreo del Ambiente , Granjas , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
8.
Bioresour Technol ; 326: 124762, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33517049

RESUMEN

Biodrying in conjunction with compound stone amendment was used to treat kitchen waste, which improved biodrying. After 16 days, the pile moisture content decreased from 68.8% to 23.0%. Lignin, cellulose and hemicellulose concentrations decreased from 104.6 mg g-1 d.b., 322.9 mg g-1 d.b. and 155.9 mg g-1 d.b., respectively, to 74.0 mg g-1 d.b., 224.8 mg g-1 d.b. and 134.5 mg g-1 d.b., respectively. The Shannon index for bacteria increased from 2.5 to 3.1, while for fungi, it decreased from 4.6 to 0.6. The relative abundances of Amino Acid Metabolism and Carbohydrate Metabolism exceeded 7%. The thermophilic phase during the process inactivated the pathogenic microorganisms, increased the bacterial diversity, decreased the fungal diversity, and potentially improved the metabolism of nutrients, including amino acids, carbohydrates, lipids and vitamins. The biomarker analysis and predicated protein sequences provide genetic evidence to elucidate why the thermophilic phase is the peak time for nutrient metabolism.


Asunto(s)
Carbohidratos , Lignina , Metabolismo de los Hidratos de Carbono , Hongos
9.
Huan Jing Ke Xue ; 41(9): 4226-4233, 2020 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-33124304

RESUMEN

A field experiment with an orthogonally designed experiment L9(34) was designed to investigate the effect of different N, P, and K levels on plant growth and Cd uptake by Hylotelephium spectabile. The results showed that the biomass of H. spectabile significantly increased with the N application rate. The highest dry weight in the shoot occurred in the treatments with a high level of N (337.5 kg ·hm-2), which was 0.86-2.00 times higher than the value with no fertilizer treatment. The addition of K contributed to promoting the Cd absorption of H. spectabile, while no effect was observed when N and P were added. Consequently, NPK fertilizers contribute to increasing the Cd uptake of H. spectabile, and the N and K fertilizer play important role in plant growth and Cd absorption respectively. Moreover, the effect of fertilizers on Cd uptake of H. spectabile was in the order of N > K > P, which indicated that N fertilizer was the main factor for promoting the Cd phytoextraction efficiency of H. spectabile by increasing the biomass. Therefore, the application of high levels of N combined with moderate levels of P and K will be an effective approach to improve the Cd phytoremediation efficiency of H. spectabile by promoting its growth, and the Cd uptake can be increased by a factor of 0.9-2.2 compared to no fertilizer treatment condition.


Asunto(s)
Cadmio , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Fertilizantes/análisis , Nitrógeno , Nutrientes , Suelo , Contaminantes del Suelo/análisis
10.
Int J Syst Evol Microbiol ; 70(7): 4339-4344, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32589572

RESUMEN

A Gram-stain-negative, rod-shaped bacterium, designated XJ4T, was isolated from oil-contaminated water, collected from Xinjiang Province, north-west PR China (45° 1' 27″ N, 85° 6' 14″ E). Growth occurred at 20-45 °C (optimum, 30 °C) and pH 6.0-10.0 (optimum, pH 6.0-7.0). Strain XJ4T could tolerate up to 7 % (w/v) NaCl and grow optimally in the absence of NaCl. Phylogenetic analysis based on comparative sequence analysis of 16S rRNA gene sequences indicated that strain XJ4T belonged to the genus Frigidibacter, and that was closely related to Frigidibacter mobilis cai42T (97.2 %), Frigidibacter albus SP32T (97.0 %) and Rhodobacter aestuarii JA296T (97.0 %). The average nucleotide identity values between XJ4T and three type strains were 77.9, 77.6 and 71.9 %, respectively. The DNA G+C content of strain XJ4T was 69.5 mol%. The sole respiratory quinone was Q-10. The major cellular fatty acid was summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C18 : 0 and 11-methyl C18 : 1 ω7c. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, unidentified phospholipids, an unidentified aminolipid and unidentified lipids. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, strain XJ4T represents a novel species of the genus Frigidibacter, for which the name Frigidibacter oleivorans sp. nov. is proposed. The type strain is XJ4T (=CGMCC 1.13778T=LMG 30952T).


Asunto(s)
Yacimiento de Petróleo y Gas/microbiología , Filogenia , Rhodobacteraceae/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Rhodobacteraceae/aislamiento & purificación , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química , Agua
11.
Chemosphere ; 256: 127009, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32438127

RESUMEN

Finding an economical amendment, available in a steady supply, is needed to support the biodrying industrialization. This research developed a recyclable biodrying amendment (RBA) to condition the biodrying of sewage sludge. The pilot-scale treatment (TR), which included the addition of equivalent weights of RBA and sawdust as amendments, resulted in a higher pile temperature and longer thermophilic phase compared to the control (TC), which used only sawdust as an amendment. The final moisture content levels were below 50% with both TR and TC. The heat use efficiency for water evaporation was 72.2% and 73.0% in TR and TC, respectively. The activity of α-amylase and cellulose 1,4-ß-cellobiosidase increased during the thermophilic phase, while the activity of endo-1,4-ß-glucanase and endo-1,4-ß-xylanase decreased during the thermophilic phase with both TR and TC. The fourier-transform infrared spectra indicated that adding the RBA resulted in good biodegradability of the lipids, proteins, and polysaccharides. The humic acid to fulvic acid ratio in TR and TC increased from 0.33 (TR) and 0.35 (TC) on day 0-0.46 (TR) and 0.45 (TC) on day 21, indicating the humification process. The RBA recovery rate was 95.6% and can be reused. These findings highlight that adding RBA showed satisfactory biodrying performance, reduced the amendment cost, and the biodrying product could be incinerated without energy deficit.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental , Calor , Incineración , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/economía , Agua
12.
Int J Syst Evol Microbiol ; 70(4): 2312-2317, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32039746

RESUMEN

A Gram-stain-negative, non-motile and ovoid bacterial strain, designated 4-2T, was isolated from oil-contaminated water which was collected from Xinjiang Province, north-west PR China. The 16S rRNA gene sequence analysis showed that strain 4-2T belonged to the genus Paracoccus. The species with highest similarity to strain 4-2T was Paracoccus saliphilus YIM 90738T (97.83 %), followed by 'Paracoccus siganidrum' M26 (97.83 %) and Paracoccus endophyticus SYSUP0003T (97.25 %). The average nucleotide identity values between 4-2T and three type strains were 84.69, 77.88 and 74.07 %, respectively. The genomic DNA G+C content of strain 4-2T was 61.4 mol%. Chemotaxonomical characteristic results showed that the respiratory quinone was ubiquinone Q-10 and the major fatty acids were summed feature 8 (C18 : 1 ω7c or C18 : 1 ω6c) and C19 : 0 cyclo ω8c. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, unidentified phospholipids, an unidentified aminolipid and an unidentified polar lipid. The predominant polyamines were putrescine, cadaverine and spermidine. On the basis of phenotypic, chemotaxonomic and phylogenetic inferences, strain 4-2T represents a novel species of the genus Paracoccus, for which the name Paracoccus alkanivorans sp. nov. is proposed. The type strain is 4-2T (=CGMCC 1.13669T=LMG 30882T).


Asunto(s)
Yacimiento de Petróleo y Gas/microbiología , Paracoccus/clasificación , Filogenia , Microbiología del Agua , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Paracoccus/aislamiento & purificación , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
13.
Ying Yong Sheng Tai Xue Bao ; 29(8): 2730-2738, 2018 Aug.
Artículo en Chino | MEDLINE | ID: mdl-30182614

RESUMEN

Air in concentrated animal feeding operations contains antibiotic resistance genes and airborne pathogens, with potential threat to human and animal health. In this study, air was sampled in the living area, outside, and inside of a fattening pig house in a pig farm for 24 and 48 hours. Feedstuffs, drinking water additives, and feces in the pig house were collected. Three kinds of antibiotic resistance genes (macrolide, ß-lactam, and tetracycline) and seven pathogenic microorganisms (Campylobacter, Clostridium perfringens, Enterococcus, Escherichia coli, Yersinia enterocolitica, Staphylococcus spp., and Streptococcus suis) were detected by polymerase chain reaction (PCR). Six genes with high detection rates were selected, with their concentrations being determined by real-time quantitative PCR (qPCR). Results showed that three macrolide and two tetracycline resistance genes were detected in all air samples. Enterococcus, Escherichia coli, Yersinia enterocolitica, and Staphylococcus spp. were detected in air samples and drinking water additive. The concentrations of most target genes were above 104 copies·m-3. The gene concentrations near the pig house were much higher than those in the living area. Main sources of antibiotic resistance genes and pathogens in the air were pig manure and drinking water additive. Sampling time of 24 h in the pig farm met the requirements for PCR detection. Sampling time of 48 h had a higher sampling efficiency than that of 24 h in the living area of the pig farm, whereas sampling time of 24 h was more appropriate than that of 48 h in high bioaerosol concentration area such as the pig house.


Asunto(s)
Crianza de Animales Domésticos , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Animales , Antibacterianos , Bacterias , Enterococcus , Contaminación Ambiental , Escherichia coli , Heces , Estiércol , Porcinos , Tetraciclina , Resistencia a la Tetraciclina
14.
Bioresour Technol ; 260: 141-149, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29625286

RESUMEN

To enable the development of microbial agents and identify suitable candidate used for biodrying, the existence and function of Bacillus thermoamylovorans during sewage sludge biodrying merits investigation. This study isolated a strain of B. thermoamylovorans during sludge biodrying, submitted it for complete genome sequencing and analyzed its potential microbial functions. After biodrying, the moisture content of the biodrying material decreased from 66.33% to 50.18%, and B. thermoamylovorans was the ecologically dominant Bacillus, with the primary annotations associated with amino acid transport and metabolism (9.53%) and carbohydrate transport and metabolism (8.14%). It contains 96 carbohydrate-active- enzyme-encoding gene counts, mainly distributed in glycoside hydrolases (33.3%) and glycosyl transferases (27.1%). The virulence factors are mainly associated with biosynthesis of capsule and polysaccharide capsule. This work indicates that among the biodrying microorganisms, B. thermoamylovorans has good potential for degrading recalcitrant and readily degradable components, thus being a potential microbial agent used to improve biodrying.


Asunto(s)
Bacillus/genética , Aguas del Alcantarillado , Análisis de Secuencia de ADN
15.
Chemosphere ; 201: 127-136, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29522953

RESUMEN

Sewage sludge biodrying is a waste treatment method that uses bio-heat generated from organic degradation to remove moisture from sewage sludge. Lignocellulose and carbohydrate decomposition is important when assessing biodrying performance. This study investigated lignocellulose and carbohydrate decomposition, and the potential microbial functions during biodrying. We determined the lignocellulose and carbohydrate contents, assayed related enzyme activity, performed a complete metagenomic study on sewage sludge biodrying material during the thermophilic phase, annotated potential genetic function involved in the decomposition, and summarized the key metabolic pathways. The results indicated that lignocellulose, readily degradable carbohydrates, and starch, significantly decomposed after biodrying. During the thermophilic phase, the majority of lignocellulose and carbohydrate-related enzymes showed significantly higher activity, and glycoside hydrolases and glycosyl transferases showed higher gene counts and reads. Moreover, the top five microorganisms enriched with carbohydrate-active enzyme genes, i.e., Bacillus, Intrasporangium, Tetrasphaera, Rhodobacter, and Streptomyces, were also among the top ten ecologically dominant genera. These findings highlight the crucial phases for biodrying process, reveal the ecologically functional diversity of biodrying-originated microbial consortia, and suggest potential candidates for optimizing biodrying decomposition.


Asunto(s)
Carbohidratos/análisis , Lignina/análisis , Metagenoma , Microbiota/genética , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Metabolismo de los Hidratos de Carbono , Calor , Metagenómica , Aguas del Alcantarillado/microbiología
16.
Huan Jing Ke Xue ; 39(11): 5189-5197, 2018 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-30628244

RESUMEN

A pot experiment was conducted to assess the phytoextraction potential for cadmium (Cd) of three types of sunflowers (edible, ornamental, and oil sunflowers) and the effects of the application of N, NP, and NPK fertilizers on Cd uptake of the three plants using Cd-contaminated soils collected from northern China. The results showed that fertilization could significantly increase the biomass, aboveground Cd concentrations and accumulation of ornamental and oil sunflowers, and the effect of NPK fertilizer was significantly better than those of other treatments. Cd concentrations of the aboveground parts of edible, ornamental, and oil sunflowers were 6.89, 8.92, 6.97 mg·kg-1, respectively. Fertilization treatment significantly improved the transport ability of Cd of the three types of sunflowers, and bioconcentration factors of edible, ornamental, and oil sunflowers were 2.63 (control) to 3.10 (NPK fertilizer), 2.80 (control) to 4.02 (NPK fertilizer), and 2.11 (control) to 3.14 (NPK fertilizer), respectively. The results further showed that the metal-enriched granules and cellular debris were the main enrichment sources in the subcellular fraction of the three types of sunflowers (more than 55%). In summary, sunflowers can be considered as plant material for remediation of Cd-contaminated soil. In addition, NPK fertilizers can effectively improve the efficiency of sunflowers.


Asunto(s)
Cadmio/metabolismo , Fertilizantes , Helianthus/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Biomasa , China , Suelo/química
17.
Huan Jing Ke Xue ; 38(5): 1783-1791, 2017 May 08.
Artículo en Chino | MEDLINE | ID: mdl-29965081

RESUMEN

In Beijing, the chemical composition and component concentrations of volatile organic compounds (VOCs) were investigated during the municipal solid waste composting process using a portable gas chromatograph coupled with a mass spectrometer. The contributions of VOCs to the ozone formation potential were computed using the maximum incremental reactivity (MIR) scale and the propylene-equivalent concentration scale. The results showed that the concentrations of waste discharge in the sorting room, the first fermentation workshop, the second fermentation workshop, the compost product workshop, and the plant boundary were 10302.1, 15484.1, 929.9, 4693.6 and 370.4 µg·m-3, respectively. The main VOCs of the municipal solid waste composting plant were ethanol, limonene, and acetone. The propylene-equivalent concentrations of waste discharge in the sorting room, the first fermentation workshop, the second fermentation workshop, the compost product workshop, and the plant boundary were 25875.7, 4087.9, 378.0, 747.7 and 296.8 µg·m-3, whereas the O3 formation potentials computed using the MIR scale were 26979.3, 21168.3, 1469.3, 6439.6 and 455.8 µg·m-3. Reducing pollution by controlling the VOCs emission of waste discharge in the sorting room and the first fermentation workshop is important and can decrease the ozone formation potential. Given the accuracy and accessibility of the method, the MIR scale is more suitable for calculating the ozone formation potential of VOCs emitted from the municipal solid waste composting plant.

18.
J Air Waste Manag Assoc ; 67(2): 212-218, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27629354

RESUMEN

Sludge is an important source of greenhouse gas (GHG) emissions, both in the form of direct process emissions and as a result of indirect carbon-derived energy consumption during processing. In this study, the carbon budgets of two sludge disposal processes at two well-known sludge disposal sites in China (for biodrying and heat-drying pretreatments, both followed by mono-incineration) were quantified and compared. Total GHG emissions from heat drying combined with mono-incineration was 0.1731 tCO2e t-1, while 0.0882 tCO2e t-1 was emitted from biodrying combined with mono-incineration. Based on these findings, a significant reduction (approximately 50%) in total GHG emissions was obtained by biodrying instead of heat drying prior to sludge incineration. IMPLICATIONS: Sludge treatment results in direct and indirect greenhouse gas (GHG) emissions. Moisture reduction followed by incineration is commonly used to dispose of sludge in China; however, few studies have compared the effects of different drying pretreatment options on GHG emissions during such processes. Therefore, in this study, the carbon budgets of sludge incineration were analyzed and compared following different pretreatment drying technologies (biodrying and heat drying). The results indicate that biodrying combined with incineration generated approximately half of the GHG emissions compared to heat drying followed by incineration. Accordingly, biodrying may represent a more environment-friendly sludge pretreatment prior to incineration.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Efecto Invernadero , Eliminación de Residuos/métodos , Aguas del Alcantarillado/análisis , China , Desecación , Calor , Incineración
19.
J Air Waste Manag Assoc ; 66(9): 930-40, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27192607

RESUMEN

UNLABELLED: On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography-mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. IMPLICATIONS: Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modelling and evaluating odor pollution from sewage sludge composting facilities.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Odorantes/análisis , Aguas del Alcantarillado/química , Suelo/química , Cromatografía de Gases y Espectrometría de Masas
20.
Bioresour Technol ; 171: 452-60, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25233360

RESUMEN

Reducing moisture in sewage sludge is one of the main goals of sewage sludge composting and biodrying. A mathematical model was used to simulate the performance of water removal under different aeration strategies. Additionally, the correlations between temperature, moisture content (MC), volatile solids (VS), oxygen content (OC), and ambient air temperature and aeration strategies were predicted. The mathematical model was verified based on coefficients of correlation between the measured and predicted results of over 0.80 for OC, MC, and VS, and 0.72 for temperature. The results of the simulation showed that water reduction was enhanced when the average aeration rate (AR) increased to 15.37 m(3) min(-1) (6/34 min/min, AR: 102.46 m(3) min(-1)), above which no further increase was observed. Furthermore, more water was removed under a higher on/off time of 7/33 (min/min, AR: 87.34 m(3) min(-1)), and when ambient air temperature was higher.


Asunto(s)
Aire , Desecación/métodos , Modelos Teóricos , Aguas del Alcantarillado/química , Suelo , Cinética , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...