Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 27(2): 232-248, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38168932

RESUMEN

Neurovascular coupling (NVC) is important for brain function and its dysfunction underlies many neuropathologies. Although cell-type specificity has been implicated in NVC, how active neural information is conveyed to the targeted arterioles in the brain remains poorly understood. Here, using two-photon focal optogenetics in the mouse cerebral cortex, we demonstrate that single glutamatergic axons dilate their innervating arterioles via synaptic-like transmission between neural-arteriolar smooth muscle cell junctions (NsMJs). The presynaptic parental-daughter bouton makes dual innervations on postsynaptic dendrites and on arteriolar smooth muscle cells (aSMCs), which express many types of neuromediator receptors, including a low level of glutamate NMDA receptor subunit 1 (Grin1). Disruption of NsMJ transmission by aSMC-specific knockout of GluN1 diminished optogenetic and whisker stimulation-caused functional hyperemia. Notably, the absence of GluN1 subunit in aSMCs reduced brain atrophy following cerebral ischemia by preventing Ca2+ overload in aSMCs during arteriolar constriction caused by the ischemia-induced spreading depolarization. Our findings reveal that NsMJ transmission drives NVC and open up a new avenue for studying stroke.


Asunto(s)
Acoplamiento Neurovascular , Ratones , Animales , Acoplamiento Neurovascular/fisiología , Vasodilatación/fisiología , Axones , Transmisión Sináptica , Arteriolas/metabolismo , Miocitos del Músculo Liso
2.
Redox Biol ; 34: 101537, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32361183

RESUMEN

Oxidative damage is one of the major contributors to retinal degenerative diseases such as age-related macular degeneration (AMD), while RPE mediated antioxidant defense plays an important role in preventing retinopathies. However, the regulatory mechanisms of antioxidant signaling in RPE cells are poorly understood. Here we show that transcription factor MITF regulates the antioxidant response in RPE cells, protecting the neural retina from oxidative damage. In the oxidative stress-induced retinal degeneration mouse model, retinal degeneration in Mitf+/- mice is significantly aggravated compared to WT mice. In contrast, overexpression of Mitf in Dct-Mitf transgenic mice and AAV mediated overexpression in RPE cells protect the neural retina against oxidative damage. Mechanistically, MITF both directly regulates the transcription of NRF2, a master regulator of antioxidant signaling, and promotes its nuclear translocation. Furthermore, specific overexpression of NRF2 in Mitf+/- RPE cells activates antioxidant signaling and partially protects the retina from oxidative damage. Taken together, our findings demonstrate the regulation of NRF2 by MITF in RPE cells and provide new insights into potential therapeutic approaches for prevention of oxidative damage diseases.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Animales , Degeneración Macular/genética , Ratones , Factor de Transcripción Asociado a Microftalmía , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina/metabolismo
3.
Exp Eye Res ; 170: 138-147, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29486165

RESUMEN

There is increasing evidence that the mechanisms protecting the retinal pigment epithelium (RPE) against oxidative stress are important for preventing retinal degenerative diseases. Little, however, is known about these mechanisms. Here we show that MITF, a transcription factor responsible for RPE development and function, regulates redox signaling by acting through PGC1α, a master regulator of mitochondrial biogenesis. Mitf deficiency in mice leads to significantly higher levels of reactive oxygen species (ROS) in both RPE and retina, suggesting that Mitf dysfunction might lead to oxidative damage in the RPE and, by extension, in the retina. Furthermore, overexpression of MITF in the human RPE cell line ARPE-19 indicates that MITF up-regulates antioxidant gene expression and mitochondrial biogenesis by regulating PGC1α and protects cells against oxidative stress. Our findings provide new insights into understanding the redox function of MITF in RPE cells and its potential contribution to prevention of RPE-associated retinal degenerations.


Asunto(s)
Antioxidantes/fisiología , Factor de Transcripción Asociado a Microftalmía/fisiología , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal/fisiología , Animales , Western Blotting , Línea Celular , Citometría de Flujo , Humanos , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/fisiología , Activación Transcripcional , Regulación hacia Arriba
4.
Pigment Cell Melanoma Res ; 31(3): 411-422, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29171181

RESUMEN

Vertebrate eye development and homoeostasis critically depend on the regulation of proliferation of cells forming the retinal pigment epithelium (RPE). Previous results indicated that the death-associated protein like-1 DAPL1 cell autonomously suppresses RPE proliferation in vivo and in vitro. Here, we show in human RPE cell lines that the pigment cell transcription factor MITF regulates RPE cell proliferation by upregulating DAPL1 expression. DAPL1 regulation by MITF is, however, mediated predominantly by (-) MITF, one of two alternative splice isoforms of MITF that lacks six residues located upstream of the DNA-binding basic domain. Furthermore, we find that the regulation of DAPL1 by MITF is indirect in that (-) MITF stimulates the transcription of Musashi homolog-2 (MSI2), which negatively regulates the processing of the anti-DAPL1 microRNA miR-7. Our results provide molecular insights into the regulation of RPE cell proliferation and quiescence and may help us understand the mechanisms of normal RPE maintenance and of eye diseases associated with either RPE hyperproliferation or the lack of regenerative proliferation.


Asunto(s)
Empalme Alternativo , Proliferación Celular/fisiología , Proteínas de la Membrana/biosíntesis , Factor de Transcripción Asociado a Microftalmía/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Transcripción Genética/fisiología , Línea Celular , Humanos , Proteínas de la Membrana/genética , Factor de Transcripción Asociado a Microftalmía/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Epitelio Pigmentado de la Retina/citología
5.
Dongwuxue Yanjiu ; 36(2): 95-102, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25855228

RESUMEN

Reproduction is the highest energy demand period for small mammals, during which both energy intake and expenditure are increased to cope with elevated energy requirements of offspring growth and somatic protection. Oxidative stress life history theory proposed that reactive oxygen species (ROS) were produced in direct proportion to metabolic rate, resulting in oxidative stress and damage to macromolecules. In the present study, several markers of oxidative stress and antioxidants activities were examined in brain, liver, kidneys, skeletal muscle and small intestine in non-lactating (Non-Lac) and lactating (Lac) KM mice. Uncoupling protein (ucps) gene expression was examined in brain, liver and muscle. During peak lactation, gross energy intake was 254% higher in Lac mice than in Non-Lac mice. Levels of H2O2 of Lac mice were 17.7% higher in brain (P<0.05), but 21.1% (P<0.01) and 14.5% (P<0.05) lower in liver and small intestine than that of Non-Lac mice. Malonadialdehyde (MDA) levels of Lac mice were significantly higher in brain, but lower in liver, kidneys, muscle and small intestine than that of Non-Lac mice. Activity of glutathione peroxidase (GSH-PX) was significantly decreased in brain and liver in the Lac group compared with that in the Non-Lac group. Total antioxidant capacity (T-AOC) activity of Lac mice was significantly higher in muscle, but lower in kidneys than Non-Lac mice. Ucp4 and ucp5 gene expression of brain was 394% and 577% higher in Lac mice than in Non-Lac mice. These findings suggest that KM mice show tissue-dependent changes in both oxidative stress and antioxidants. Activities of antioxidants may be regulated physiologically in response to the elevated ROS production in several tissues during peak lactation. Regulations of brain ucp4 and ucp5 gene expression may be involved in the prevention of oxidative damage to the tissue.


Asunto(s)
Antioxidantes/metabolismo , Ingestión de Energía/fisiología , Lactancia/fisiología , Estrés Oxidativo/fisiología , Animales , Biomarcadores , Encéfalo/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Glutatión Peroxidasa , Peróxido de Hidrógeno , Canales Iónicos/genética , Canales Iónicos/metabolismo , Hígado/metabolismo , Malondialdehído , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Embarazo , Superóxido Dismutasa , Proteína Desacopladora 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA