Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Stroke Cerebrovasc Dis ; 30(10): 106045, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34418671

RESUMEN

BACKGROUND: Matrix metalloproteinase 10 (MMP-10) has a close relationship with carotid atherosclerosis (CAS) and cerebral infarction. The MMP-10 rs17435959 polymorphism causes a leucine to valine transition at codon 4 in exon 1 of the MMP-10 gene and may have functional effects. OBJECTIVES: To investigate the relationship between the MMP-10 rs17435959 polymorphism and the formation and stability of CAS plaques. MATERIALS AND METHODS: The present case-control study contains 738 visitors who came to our health examination center for the first time. According to the carotid ultrasound examinations, visitors were classified into the vulnerable plaque group (41-86 years old, 141 male, 105 female), the stable plaque group (41-86 years old, 141 male, 105 female) and the no plaque group (41-85 years old, 141 male, 105 female). All visitors in the three groups were sex- and- age-matched, and cardiovascular and cerebrovascular diseases were absent. The polymorphism was genotyped by real-time polymerase chain reaction- restriction. RESULTS: Compared to the GG genotype, the frequency of the CC and CG genotypes was significantly more common in the vulnerable plaque group than in the no plaque group (18.7% vs. 7.7%, unadjusted P = 0.002). Moreover, compared to the G allele, the frequency of the C allele was significantly more common in the vulnerable plaque group than in the no plaque group (10.4% vs. 3.9%, unadjusted P = 0.000) and in the vulnerable plaque group than in the stable plaque group (10.4% vs. 5.1%, unadjusted P = 0.008). Binary logistic regression showed that the CC and CG genotype was independent risk factor for the formation (P = 0.019, OR = 1.961, 95% CI [1.117, 3.444]) and vulnerability (P = 0.035, OR = 1.842, 95% CI [1.045, 3.247]) of CAS plaques. Moreover, individuals who have the C allele showed a higher level of fibrinogen, which was an independent risk factor for the formation of CAS plaques (P = 0.000, OR = 2.425, 95% CI [1.475, 3.985]). CONCLUSIONS: The rs17435959 polymorphism was associated with the formation and vulnerability of CAS plaques. Individuals who had variant-type MMP-10 showed higher levels of fibrinogen, which promoted the formation of CAS plaques.


Asunto(s)
Enfermedades de las Arterias Carótidas/genética , Metaloproteinasa 10 de la Matriz/genética , Placa Aterosclerótica , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/enzimología , Estudios de Casos y Controles , Femenino , Fibrinógeno/análisis , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Pronóstico , Medición de Riesgo , Factores de Riesgo , Rotura Espontánea
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 23(5): 1422-6, 2015 Oct.
Artículo en Chino | MEDLINE | ID: mdl-26524050

RESUMEN

OBJECTIVE: To investigate the protection of silymarin against the human mesenchymal stem cell (MSC) apoptosis induced by serum deprivation and its underlying mechanism. METHODS: Human umbilical cord MSCs were cultured in the absence of serum, and the silymain of different concentration (1-10 µg/ml) was added into the medium. MTT test was performed to observe the cell proliferation status. After being cultured for 72 hours, the cells were collected, and flow cytometry with Annexin-V-PI double-staining was used to detect the apoptotic cells from the control and silymarin-treated groups. Furthermore, the intracellular contents of BAX and BCL-2 were detected by Western blot for exploring the potential mechanism. RESULTS: The silymarin promoted the proliferation of human UC-MSCs in a dose-dependent manner, reaching its maximal at a dose of 5 µg/ml. Moreover, silymarin could inhibit the serum deprivation-induced apoptosis of MSCs and, the inhibitory rate reached up to 30% when it was added at a concentration of 5 µg/ml. The content of intracellular BAX was obviously elevated after serum-deprivation treatment, and this increase could be blunted by the addition of silymarin. Meanwhile, the content of BCL-2 was not obviously changed. CONCLUSION: The silymarin can stimulate MSC growth and inhibit the apoptosis of MSCs probably by the mitochondria pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Silimarina/farmacología , Cordón Umbilical/citología , Proliferación Celular , Medio de Cultivo Libre de Suero , Humanos , Mitocondrias , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...