Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 61(46): 18335-18339, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36346707

RESUMEN

The generation and regulation of chirality are closely related to the origin of life. Using achiral precursors to spontaneously build chiral MOFs remains a major challenge. Here, a method to synthesize chiral MOFs from achiral precursors by utilizing chiral fragments was achieved. The transformation from chiral fragments of 1 to chiral frameworks of 2 and 3 was realized by modifying the substituents, and the enantiomer resolution of 3-P41212 and 3-P43212 was achieved by d/l camphoric acid. 3 was then further studied in applications.


Asunto(s)
Estructuras Metalorgánicas
2.
Inorg Chem ; 61(14): 5465-5468, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35354284

RESUMEN

The facile exfoliation of a two-dimensional metal-organic nanosheet of {[Co(HL)(H2O)(Py)3/4]·1/2H2O·DMF}n [1-Py; H3L = 5-(1H-pyrazol-4-yl)isophthalic acid and Py = pyridine] was achieved, via a molecular scalpel strategy, by weakening intermolecular forces between adjacent layers. The resulting 1-Py/KB40 (KB = Ketjen black) shows an increased oxygen evolution reaction (OER) performance with an overpotential of 370 mV at a current density of 10 mA cm-2 and a Tafel slope of 58 mV dec-1. This work sheds light on the structure-morphology-reactivity relationship of such materials in OER.

3.
Inorg Chem ; 61(1): 47-51, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34935390

RESUMEN

Under solvothermal conditions, a three-dimensional mononuclear crystal AQNU-1, {[Co(H2L)(DPD)(H2O)2]·2DMA}n (H2L = 5-(bis(4-carboxybenzyl)amino)isophthalic acid, DPD = 4,4'-(2,5-diethoxy-1,4-phenylene)dipyridine) has been synthesized. The transformations of AQNU-1 to binuclear {[Co2(L)(DPD)1.5(H2O)3]·DMA·H2O}n (AQNU-2) and pentanuclear {[Co5(L)2(DPD)2(OH)2]·2H2O}n (AQNU-3) were realized by double stimulation of temperature and solvent, which were accomplished by single-crystal to single-crystal (SC-SC) reaction.

4.
Dalton Trans ; 50(26): 9310-9316, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34132290

RESUMEN

The excessive use of fossil energy has caused the CO2 concentration in the atmosphere to increase year by year. MOFs are ideal CO2 adsorbents that can be used in CO2 capture due to their excellent characteristics. Studies of the structure-activity relationship between the small structural differences in MOFs and the CO2 adsorption capacities are helpful for the development of efficient MOF-based CO2 adsorbents. Therefore, a series of pillar-layered MOFs with similar structural and different functional groups were designed and synthesized. The CO2 adsorption tests were carried out at 273 K to explore the relationship between the small structural differences in MOFs caused by different functional groups and the CO2 adsorption capacities. Significantly, compound 6 which contains a pyridazinyl group has a 30.9% increase in CO2 adsorption capacity compared to compound 1 with no functionalized group.

5.
Dalton Trans ; 50(23): 7944-7948, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34096564

RESUMEN

Three coordination polymers (CPs) were synthesized by using CdII, fluorescent 9,10-di(4-pyridyl)anthracene (dpa), and cyclohexane-1,4-dicarboxylic acid (H2cda), and they are [Cd2(dpa)2(cda)Cl2]n (1), [Cd(dpa)2(cda)]n (2) and [Cd(dpa)(cda)(H2O)]n (3). Both 1 and 2 are fluorescent and contain nonporous layers. 3 is an isomer of 2 and contains a porous diamondoid network. Fluorescent mixed matrix membranes were prepared by dispersing the particles of 1 or 2 within the matrix of polymethyl methacrylate, and showed high sensitivity and selectivity for detecting Cr2O72- in water. Both stability and recyclability of the MMMs were remarkably higher than those of the CP powders.

6.
Dalton Trans ; 50(21): 7409-7416, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33969851

RESUMEN

In this work, inspired by a water-assisted three-dimensional supramolecular structure 1, we use a mixed-ligand strategy to form a 3D pillared-layered matrix by the introduction of linear ligands to compete against the water molecules. The resulting analogue microporous MOFs of 2-H, 2-F and 2-N, decorated with different functional groups, similarly show the CO2 uptake. Thanks to the negligible N2 adsorption capacity, enhanced selective adsorption towards CO2 is achieved in compound 2-N. That is, we present here an alternative plan for the high CO2 selective adsorption performance. In addition, the structure stability and moderate affinity for CO2 of these microporous MOFs endow them with excellent reusability.

7.
Inorg Chem ; 59(10): 7181-7187, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32352295

RESUMEN

Lanthanide (such as Tb and Eu) metal-organic frameworks (MOFs) have been widely used in fluorescent probes because of their multiple coordination modes and brilliant fluorescence characteristic. Many lanthanide MOFs were applied in detecting metal ions, inorganic anions, and small molecules. However, it's rarely reported that Ln-MOF was devoted to detecting malachite green (MG) and uric acid (UA). We prepared a europium-based metal-organic framework (Eu-TDA) (TDA = 2,5-thiophenedicarboxylic acid group). Luminescence studies demonstrated that Eu-TDA can rapidly detect MG and UA with excellent selectivity and sensitivity, where individual quenching efficiency Ksv (MG: 5.8 × 105 M-1; UA: 4.15 × 104 M-1) and detection limit (MG: 0.0221 µM; UA: 0.689 µM) were regarded as the excellent MOF sensors for detecting MG and UA. The quenching of Eu-TDA's fluorescence emission by MG and UA was likely due to the spectral overlap, energy transfer, and competition. Among 11 metal cations and 14 anions, Eu-TDA can quickly and effectively recognize MG and UA with highly selective and sensitive properties. Our method possesses potential application in detecting UA in human blood and MG in the fishpond.

8.
Dalton Trans ; 49(17): 5618-5624, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32285086

RESUMEN

Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) with tunable pore sizes, shapes and functionalities have excellent prospects in many applications, such as carbon capture. Molecular sieving can usually enable very high CO2 adsorption selectivity but has rarely been achieved, because it is difficult to precisely control the pore size in the range of 3-4 Å. We report here three MOF isomers built from CdII, terephthalic acid and 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine with the same stoichiometric ratio, among which 1 and 2 are framework-catenation isomers and 2 and 3 are framework-topological isomers. 1 contains 2-fold interpenetrated networks (topology of pcu) and 1D ultra-micropores and shows highly selective adsorption of CO2 over N2 and CH4, which is mainly ascribed to the molecular sieving effect of the framework. 2 contains a pcu network with 3D interconnected micropores, and 3 contains a kag network with much larger pores of 15 Å. Framework isomerization, in this case, was shown to be a feasible way of tuning the pore size of a MOF for selective CO2 adsorption. The effects of hydrothermal reaction conditions and additives on the structures and the formation of the MOF isomers were also studied.

9.
Dalton Trans ; 49(7): 2145-2150, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31994550

RESUMEN

Tetrazole-based molecules have numerous bridging coordination modes which afford great synthetic possibilities for the preparation of porous metal-tetrazolate architectures for many applications, such as carbon capture. We reported here three tetrazole-based MOFs: 1, {[Cu12(ttz)8/3Cl5(H2O)16]11+·11Cl-}n (H3ttz = N2,N4,N6-tris(4-(1H-tetrazol-5-yl)phenyl)-1,3,5-triazine-2,4,6-triamine), contains highly positively charged Cu12 clusters and the largest mesopores (32 Å) among the reported MOFs based on a tri-topic tetrazole ligand. 2 and 3 are two MOF isomers built by using CuII and 2-(1H-tetrazol-5-yl)pyrimidine. 3 contains nonporous layers, while 2 contains 1D channels and showed high selectivity for adsorbing CO2, which should be attributed to the high density of free nucleophilic tetrazole N atoms on the pore surfaces. We found that the isomerization between 2 and 3 was caused by the diverse coordination modes of tetrazole-based ligands and can be controlled in synthesis processes.

10.
Dalton Trans ; 48(14): 4650-4656, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30892337

RESUMEN

Metal-organic frameworks (MOFs) are an exciting class of porous crystallized materials, which have attracted great interest in sustainable energy and environmental remediation. Magnetite (Fe3O4) is one of the best-known magnetic materials and has been extensively studied with respect to properties involving high saturation magnetization, biocompatibility and low toxicity. The combination of MOFs and Fe3O4 has shown its potential applications in drug delivery, catalysis and wastewater treatment. However, only classical porous MOFs are used to encapsulate magnetic nanoparticles, such as MIL-100(Fe), ZIF-8, UiO-66 and so on. Herein, we firstly synthesized a new MOF ZTB-1 and surveyed its applications in magnetic materials. As a result, a highly water-stable MOF-based magnetic material Fe3O4@ZTB-1 has been obtained, and it was for the first time used as an excellent adsorbent for the fast adsorption of Congo red (CR) from aqueous solutions, exhibiting an adsorption capacity of 458 mg CR per gram. The electrostatic interactions and hydrogen bond are responsible for binding of CR with Fe3O4@ZTB-1. The magnetic material Fe3O4@ZTB-1 shows a potential application in dyeing wastewater treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...