Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 261: 122015, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38996734

RESUMEN

Small molecules, including natural metabolites, organic matter decomposition products, and engineered oxidation byproducts, are widespread in aquatic environment. However, the limited understanding of the photochemical interactions of these small molecules with water pollutants hampers the development of effective environmental protection strategies. This study explores the structural features governing the photochemical transformation of toxic oxyanions by α- and ß-dicarbonyl compounds. By integrating experimental observations with quantum chemical calculations, a robust correlation network was constructed. The correlation network reveals that the reactivity of small organic molecules with oxyanions could be quantitively predicted by their intrinsic properties, such as electronic transition energy, bond dissociation energy, molecular softness, molecular orbital gap, atomic charge, and molecular surface local ionization energy. This network maps the relationship between the molecular architecture of chemicals and their photochemical behaviors. This perspective offers fresh insights into the photochemical behaviors of small molecules in diverse environmental and chemical contexts and are helpful for developing advanced water treatment strategies toward a sustainable future.

2.
J Colloid Interface Sci ; 666: 648-658, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38570207

RESUMEN

Interfacial regulation is key to photocatalytic performance, yet modulating interfacial charge transfer in heterostructures remains challenging. Herein, a novel nanoflower-like FeP/ZnIn2S4 Ohm heterostructure is first designed, with Zn atoms in ZnIn2S4 (ZIS) acting as potential anchoring sites around P atoms, forming liganded Zn-P bonds. Combining 1D FeP nanowires and 2D ZIS nanosheets enhances the mobility of photogenerated electrons. The synergistic chain-type "electron pickup" mechanism of the Ohm heterojunction coupled with the Zn-P bond speeds up electron transport at the interface. The Ohm heterojunction initiates an internal electric field, creating a driving force to further transfer photogenerated electrons through the Zn-P rapid electron transport channel to FeP, which acts as a reservoir for active sites to release H2. The optimized FeP/ZIS demonstrates a remarkable H2 evolution rate at 4.36 mmol h-1 g-1, 3.6 times that of pristine ZIS. This work provides novel insights into optimizing photocarrier dynamics via interfacial microenvironment modulation.

3.
Chemosphere ; 351: 141195, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242516

RESUMEN

Indirect photodegradation is an important pathway for the reduction of steroid estrogens in sunlit surface waters. Nevertheless, the kinetics and mechanisms governing the interaction between coexisting carbonyl compounds and estrogens under visible light (Vis) remain unexplored. This study systematically investigates the Vis-induced photodegradation of 17ß-estradiol (E2) in the presence of five specific carbonyl compounds-biacetyl (BD), acetone, glyoxal, pyruvic acid, and benzoquinone. The results demonstrate that, among these compounds, only BD significantly enhanced the photodegradation of E2 under Vis irradiation (λ > 400 nm). The pseudo-first order photodegradation rate constants (k1) of E2 in the Vis/BD system were 0.025 min-1 and 0.076 min-1 in ultrapure water and river water, respectively. The enhancing effect of BD was found to be pH-dependent, increasing the pH from 3.0 to 11.0 resulted in a 76% reduction in the k1 value of E2 in the Vis/BD system. Furthermore, the presence of humic acid, NO3-, or HCO3- led to an increase of more than 35% in the k1 value of E2, while NO2- exerted a pronounced inhibitory effect, resulting in a 92% decrease. Peroxyacetyl and peroxymethyl radicals, derived from BD in a yield ratio of 9, played a crucial role in the degradation of E2. These peroxyl radicals primarily targeted electron-rich hydroxyl sites of E2, initiating hydroxylation and ring-opening reactions that culminated in the formation of acidic byproducts. Notably, toxicity evaluation indicates that these hydroxylated and acidic products exhibited lower toxicity than the parent compound E2. This study highlights the important role of peroxyl radicals in estrogen degradation within aquatic environment, and also helps to design efficient visible light-responsive photo-activators for the treatment of estrogen-contaminated waters.


Asunto(s)
Diacetil , Peróxidos , Contaminantes Químicos del Agua , Luz , Estradiol/metabolismo , Agua/química , Estrógenos , Fotólisis , Contaminantes Químicos del Agua/química , Cinética
4.
Chemosphere ; 346: 140660, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951397

RESUMEN

Machine learning (ML) is becoming an efficient tool for predicting the fate of aquatic contaminants owing to the preponderance of big data. However, whether ML can "learn" the differences in reactivity among different free radicals has not yet been tested. In this work, the effectiveness of combining ML algorithms with molecular fingerprints to predict the reactivity of three free radicals was evaluated. First, a dataset containing 211 organic pollutants and their respective rate constants with the carbonate radical (CO3•-) was used to develop predictive models using both linear regression and ML methods. The use of topological atomic alignment information, in the form of the molecular access system (MACCS) and Morgan Fingerprint, and the electronic structure features (energy levels of the lowest unoccupied and highest occupied molecular orbitals, ELUMO and EHOMO, and the energy gap between ELUMO and EHOMO) gave satisfactory predictive performances (ML model with Random Forest algorithm with MACCS: RMSEtest = 0.787; linear regression model with energy levels: RMSEtest = 0.641). Additionally, the model interpretation correctly described that the key reactivity features for CO3•- were relatively close to those for SO4•- rather than those for •OH. These results suggest that combination of ML algorithms with easily accessible molecular fingerprints would be a powerful tool to accurately predict the radical reactions towards organic compounds.


Asunto(s)
Contaminantes Ambientales , Compuestos Orgánicos/química , Radicales Libres , Algoritmos , Bosques Aleatorios , Relación Estructura-Actividad Cuantitativa
5.
Environ Sci Technol ; 57(15): 6188-6195, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37011377

RESUMEN

The coexistence of selenite (Se(IV)) and acetylacetone (AA) generated a synergistic effect on the growth inhibition of a bloom-forming cyanobacterium, Microcystis aeruginosa. The mechanism behind this phenomenon is of great significance in the control of harmful algal blooms. To elucidate the role of Se(IV) in this effect, the reactions in ternary solutions composed of Se(IV), AA (or two other similar hydrogen donors), and quinones, especially benzoquinone (BQ), were investigated. The transformation kinetic results demonstrate that Se(IV) played a catalytic role in the reactions between AA (or ascorbic acid) and quinones. By comparison with five other oxyanions (sulfite, sulfate, nitrite, nitrate, and phosphate) and two AA derivatives, the formation of an AA-Se(IV) complexation intermediate was confirmed as a key step in the accelerated reactions between BQ and AA. To our knowledge, this is the first report on Se(IV) as a catalyst for quinone-involved reactions. Since both quinones and Se are essential in cells and there are many other chemicals of similar electron-donating properties to that of AA, the finding here shed light on the regulation of electron transport chains in a variety of processes, especially the redox balances that are tuned by quinones and glutathione.


Asunto(s)
Microcystis , Ácido Selenioso/farmacología , Benzoquinonas/farmacología , Catálisis
6.
Chemosphere ; 308(Pt 2): 136326, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36084835

RESUMEN

Organoarsenical antibiotics pose a severe threat to the environment and human health. In aquatic environment, dissolved organic matter (DOM)-mediated photochemical transformation is one of the main processes in the fate of organoarsenics. Dicarbonyl is a typical redox-active moiety in DOM. However, the knowledge on the photoconversion of organoarsenics by DOM, especially the contributions of dicarbonyl moieties is still limited. Here, we systematically investigated the photochemical transformation of three organoarsenics with the simplest ß-diketone, acetylacetone (AcAc), as a model dicarbonyl moiety of DOM. The presence of AcAc significantly enhanced the photochemical conversion of roxarsone (ROX), whereas only minor effects were observed for 3-amino-4-hydroxyphenylarsonic acid (HAPA) and arsanilic acid (ASA), because the latter two (with an amino (-NH2) group) are more photoactive than ROX (with a nitro (-NO2) group). The results demonstrate that AcAc was a potent photo-activator and the reduction of -NO2 to -NH2 might be a rate-limiting step in the phototransformation of ROX. At a 1:1 M ratio of AcAc to ROX, the photochemical transformation rate of ROX was increased by 7 folds. In O2-rich environment, singlet oxygen, peroxide radicals, and ·OH were the main reactive species that led to the breakage of the C-As bond in ROX and the oxidation of the released arsono group to arsenate, whereas the triplet-excited state of AcAc (3AcAc*) and carbon-centered radicals from the photolysis of AcAc dominated in the reductive transformation of ROX. In anoxic environment, 3-amino-4-hydroxyphenylarsonic acid was one of the main reductive transformation intermediates of ROX, whose photolysis rate was about 35 times that of ROX. The knowledge obtained here is of great significance to better understand the fate of organoarsenics in natural environment.


Asunto(s)
Roxarsona , Contaminantes Químicos del Agua , Antibacterianos , Ácido Arsanílico , Arseniatos , Carbono , Humanos , Dióxido de Nitrógeno , Oxidación-Reducción , Pentanonas , Peróxidos , Fotólisis , Roxarsona/química , Oxígeno Singlete , Contaminantes Químicos del Agua/análisis
7.
Water Res ; 217: 118424, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35429883

RESUMEN

In surface waters, photogenerated transients (e.g., hydroxyl radicals, carbonate radicals, singlet oxygen and the triplet states of dissolved organic matter) are known to play a role in the transformation of biorecalcitrant carbamazepine (CBZ). Small diketones, such as acetylacetone (AcAc) and butanedione (BD), are naturally abundant and have been proven to be effective precursors of carbon and oxygen centered radicals. However, the photochemical kinetics and mechanisms of coexisting diketones and CBZ are barely known. Herein, the effects of AcAc and BD on the photochemical conversion of CBZ were investigated compared with H2O2 which was the main ·OH precursor in the environment. An enhancing effect was observed for the degradation of CBZ by the addition of diketones. The enhancing effect of diketones was pH-dependent and much more significant than H2O2 under simulated solar irradiation. On the basis of the identification of transient species and the competition kinetic model, organic peroxyl radicals were found to play a dominant role in CBZ photodegradation, and the second-order rate constants of the reaction between CBZ and peroxyl radicals were determined to be approximately 107-108 M-1s-1. Furthermore, mutagenic acridine was found to be the major cumulative intermediate with a yield of > 30% in the presence of diketones, which might be an environmental concern. This work indicates that the coexistence of diketones and persistent organic pollutants might lead to some detrimental effects on aquatic environments if the water is exposed to sunlight.


Asunto(s)
Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Carbamazepina , Cinética , Fotólisis , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Technol ; 55(24): 16646-16654, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34889589

RESUMEN

Tellurium (Te) is a rare element of great value, but it exists mainly in the toxic form of tellurite (TeIV) in water. Effective approaches that are able to reduce the toxicity and recover Te from contaminated water are highly needed. Here, we developed a simple but effective way to reduce toxic TeIV to widely applicable elemental Te0. With the combination of ultraviolet (UV) and biacetyl (BD), the oxidation state of Te could be feasibly changed from IV to 0 or VI. The consumption of dissolved oxygen (DO) was a key factor in the redox conversion of TeIV. Under UV irradiation, BD was first cleaved to acetyl radicals, which could then combine with water molecules to form more reductive diol radicals or combine with DO to form strongly oxidative peroxide radicals. Even without deoxygenation, the UV/BD system could rapidly change from being oxidative to being reductive because of the fast depletion of DO. Owing to the high quantum yield of the acetyl radical, the reduction efficiency of the UV/BD system was about 1 order of magnitude higher than that of UV/sulfite and was more efficient than the commonly used biological methods. This work provides a proof of concept for the reduction of tellurite, which could have relevant implications for water treatment and resource recovery applications.


Asunto(s)
Diacetil , Telurio , Oxidación-Reducción
9.
Nanotechnology ; 33(7)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34763330

RESUMEN

Controllable synthesis, proper dispersion, and feasible functionalization are crucial requirements for the application of nanomaterials in many scenarios. Here, we report an all-in-one approach for the synthesis and functionalization of gold nanoparticles (AuNPs) with the simplestß-diketone, acetylacetone (AcAc). With this approach, the particle size of the resultant AuNPs was tunable by simply adjusting the light intensity or AcAc dosage. Moreover, owing to the capping role of AcAc, the resultant AuNPs could be stably dispersed in water for a year without obvious change in morphology and photochemical property. Formation of ligand to metal charge transfer complexes was found to play an important role in the redox conversion of Au with AcAc. Meanwhile, the moderate complexation ability enables the surface AcAc on the AuNPs to undergo ligand exchange reactions (LER). With the aid of Ag+, the AuNPs underwent LER with glutathione and exhibited enhanced photoluminescence (PL) with a maximum of 22-fold increase in PL intensity. The PL response was linear to the concentration of glutathione in the range of 0-500µM. Such a LER makes the obtained AuNPs being good imaging probes. To the best of our knowledge, this is the first work on illustrating the roles of AcAc as a multifunctional ligand in fabrication of NPs, which sheds new light on the surface modulation in synthesis of nanomaterials.

10.
Water Res ; 196: 117046, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33774353

RESUMEN

Acetylacetone (AA) has proven to be a potent photo-activator for the decolorization of dyes. However, there is very limited information on the quantitative structure-activity relationship (QSAR) and the mechanisms of dye degradation by UV/AA. Herein, the photolysis of 65 aromatic compounds (dyes and dye precursors) was investigated at three pH values (4.0, 6.0, 9.0) by UV/AA and UV/H2O2. The obtained pseudo-first-order photodegradation rate constants (k1) were processed using statistical analysis. The correlation between the k1 values and the number of photons absorbed by AA, together with the observed pH effect, suggested that the protonated enol structure of AA plays a crucial role in the photodecolorization of dyes. According to quantum chemical computation, photo-induced direct electron transfer between the excited state of AA and the dye was the main mechanism in the UV/AA process. QSAR models demonstrated that the molecular size and stability were the key factors that determined the efficiency of UV/H2O2 for dye degradation. Statistically, the UV/AA process was target-selective and suffered less from the inner filter effect, which made it more effective than the UV/H2O2 process for dye degradation. The selectivity of the UV/AA process was mainly embodied in the substituent effects: dyes with hydroxyl groups in conjugated systems decomposed faster than those with nitro-substitution or ortho-substituted sulfonate groups. The results can be used for the selection of appropriate photochemical approaches for the treatment of dye-contaminated water.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Oxidación-Reducción , Pentanonas , Fotólisis , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...