Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.095
Filtrar
1.
Chem Sci ; 15(30): 12017-12025, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092128

RESUMEN

Herein, we present an attractive organocatalytic asymmetric addition of P-nucleophiles to five-membered cyclic N-sulfonyl imines facilitated by phosphonium salt catalysis, enabling the highly enantioselective synthesis of tri- and tetra-substituted cyclic phosphorus-containing benzosultams. With this protocol, various cyclic α-aminophosphonates were efficiently synthesized with high yields and exceptional enantioselectivities (up to >99% ee) under mild reaction conditions. The utility and practicality of this method were demonstrated through gram-scale reactions and straightforward elaborations. Notably, the success of this approach relies on the deliberate selection of a synergistic organocatalytic system, which helps circumvent foreseeable side effects while handling secondary phosphine oxides (SPOs). Systematic mechanistic studies, incorporating experiments and DFT calculations, have revealed the critical importance of judiciously selecting bifunctional phosphonium salt catalysts for effectively activating P-nucleophiles while stereoselectively controlling the P-attack process.

2.
Food Chem ; 460(Pt 3): 140731, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39106757

RESUMEN

17ß-E2 is used in animal growth regulation and agricultural fertilizer, and even ng L-1 mass concentration levels can show biological effects. In this work, Ag NPs was used as surface-enhanced Raman spectroscopy (SERS) source and WS2 was synthesized by a simple method to provide a uniform distribution platform for Ag NPs. The MIP was the shell, which can selectively enrich the target molecule, pull the distance between the target molecule and SERS source, and protect Ag NPs. A cyclable SERS substrate with high sensitivity for detecting 17ß-E2 in food was constructed. The optimized WS2/Ag@MIP as SERS substrate has the advantages of high Enhanced Factor (EF = 2.78 × 109), low detection limit (LOD = 0. 0958 pM), strong anti-interference ability, and good recycling performance. Moreover, the detection of 17ß-E2 in real samples still has good accuracy. This work provides a new possibility for the trace detection of 17ß-E2 in food.

3.
Neurochem Res ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167346

RESUMEN

Cerebral ischemia reperfusion injury is a severe neurological impairment that occurs after blood flow reconstruction in stroke, and microglia cell pyroptosis is one of its important mechanisms. Electroacupuncture has been shown to be effective in mitigating and alleviating cerebral ischemia reperfusion injury by inhibiting neuroinflammation, reducing cellular pyroptosis, and improving neurological function. In this experiment, we divided the rats into three groups, including the sham operation (Sham) group, the middle cerebral artery occlusion/reperfusion (MCAO/R) group, and the pre-electroacupuncture (EAC) group. Pre-electroacupuncture group was stimulated with electroacupuncture of a certain intensity on the Baihui (GV 20) and Dazhui (GV 14) of the rat once a day from the 7th day to the 1st day before the MCAO/R operation. The extent of cerebral infarction was detected by TTC staining. A modified Zea-Longa five-point scale scoring system was used to determine neurologic function in MCAO rats. The number of neurons and morphological changes were accessed by Nissl staining and HE staining. The cellular damage was detected by TUNEL staining. In addition, the expression levels of RhoA, pyrin, GSDMD, Caspase1, cleaved-Caspase1, Iba-1, CD206, and ROCK2 were examined by western blotting and immunofluorescence. The results found that pre-electroacupuncture significantly attenuated neurological impairment and cerebral infarction compared to the post-MCAO/R rats. In addition, pre-electroacupuncture therapy promoted polarization of microglia to the neuroprotective (M2) phenotype. In addition, pre-electroacupuncture inhibited microglia pyroptosis by inhibiting RhoA/pyrin/GSDMD signaling pathway, thereby reducing neuronal injury and increasing neuronal survival in the MCAO/R rats. Taken together, these results demonstrated that pre-acupuncture could attenuate cerebral ischemia-reperfusion injury by inhibiting microglial pyroptosis. Therefore, pre-electroacupuncture might be a potential preventive strategy for ischemic stroke patients.

4.
Mil Med Res ; 11(1): 58, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164787

RESUMEN

Robot-assisted surgery has evolved into a crucial treatment for prostate cancer (PCa). However, from its appearance to today, brain-computer interface, virtual reality, and metaverse have revolutionized the field of robot-assisted surgery for PCa, presenting both opportunities and challenges. Especially in the context of contemporary big data and precision medicine, facing the heterogeneity of PCa and the complexity of clinical problems, it still needs to be continuously upgraded and improved. Keeping this in mind, this article summarized the 5 stages of the historical development of robot-assisted surgery for PCa, encompassing the stages of emergence, promotion, development, maturity, and intelligence. Initially, safety concerns were paramount, but subsequent research and engineering advancements have focused on enhancing device efficacy, surgical technology, and achieving precise multi modal treatment. The dominance of da Vinci robot-assisted surgical system has seen this evolution intimately tied to its successive versions. In the future, robot-assisted surgery for PCa will move towards intelligence, promising improved patient outcomes and personalized therapy, alongside formidable challenges. To guide future development, we propose 10 significant prospects spanning clinical, research, engineering, materials, social, and economic domains, envisioning a future era of artificial intelligence in the surgical treatment of PCa.


Asunto(s)
Neoplasias de la Próstata , Procedimientos Quirúrgicos Robotizados , Humanos , Masculino , Procedimientos Quirúrgicos Robotizados/métodos , Procedimientos Quirúrgicos Robotizados/historia , Procedimientos Quirúrgicos Robotizados/tendencias , Neoplasias de la Próstata/cirugía , Inteligencia Artificial/tendencias
5.
Org Lett ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158209

RESUMEN

Herein we report a Pd-catalyzed regio- and diastereoselective hydro(hetero)arylation of inactivated alkylidenecyclobutanes. This protocol provides a rapid and atom-economical route to access 3-cyclobutyl (hetero)arenes with good functionalities toleration. With the assistance of the directing group, nucleophilic attack happened on the bulkier γ-position to form the quaternary carbon center. Furthermore, the selected products exhibited antitumor bioactivities.

6.
J Hazard Mater ; 478: 135531, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178782

RESUMEN

Microplastics (MPs) pose significant concerns for marine ecological security due to their minuteness and ubiquity. However, comprehensive knowledge on their distribution and fate in seawater columns remains limited. This study investigated the abundances and characteristics of MPs across 3-6 water layers in the South Yellow Sea and East China Sea. Results indicate that high-abundance small MPs (< 100 µm) (average 6567 items/m3) were hidden beneath the sea-surface, predominantly fine-grained particles (< 20 µm) and high-density polymers (> 1.03 g/cm3). The total suspended MPs (5.0-834.2 µm) are estimated at 2.9-3.1 × 1017 particles, with most of them occurring in upper layers. In profiles, their distribution varied by physical properties with depth; fragment-shaped and high-density MPs increased in proportion at greater depths, contrasting with fibrous MPs. These MPs originated primarily from the Yangtze River and their winter transport was driven by the Yangtze River Dilution Water, East China Sea Coastal Current, and Yellow Sea Warm Current, resulting in their accumulation in coastal and estuarine regions. Consequently, the Yangtze River Estuary ecosystem faces substantial risks from MP pollution throughout the water column. This work unveils the prevalence of small MPs in coastal water columns and intricate interaction between their fate and hydrodynamic conditions.

7.
Nanomaterials (Basel) ; 14(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39120341

RESUMEN

We developed and experimentally realized a scheme of optical nonreciprocity (ONR) by using degenerate two-level atoms embedded in an optical ring cavity. For the degenerate transition Fg = 4 ↔ Fe = 3, we first studied the cavity-transmission property in different coupling field configurations and verified that under the strong-coupling regime, the single-dark-state peak formed by electromagnetically induced transparency (EIT) showed ONR. The stable ground-state Zeeman coherence for Λ-chains involved in the degenerate two-level system was found to be important in the formation of intracavity EIT. However, different from the three-level atom-cavity system, in the degenerate two-level system, the ONR effect based on intracavity EIT occurred only at a low probe intensity, because the cavity-atom coupling strength was weakened in the counter-propagating probe and coupling field configuration. Furthermore, ONR transmission with a high contrast and linewidth-narrowing was experimentally demonstrated.

8.
Plant Physiol Biochem ; 215: 109011, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39128403

RESUMEN

Phosphate deficiency and drought are significant environmental constraints that impact both the productivity and quality of wheat. The interaction between phosphorus and water facilitates their mutual absorption processes in plants. Under conditions of both phosphorus deficiency and drought stress, we observed a significant upregulation in the expression of wheat MYB-CC transcription factors through the transcriptome analysis. 52 TaMYB-CC genes in wheat were identified and analyzed their evolutionary relationships, structures, and expression patterns. The TaMYB-CC5 gene exhibited specific expression in roots and demonstrated significant upregulation under phosphorus deficiency and drought stress compared to other TaMYB-CC genes. The overexpression of TaMYB-CC5A in Arabidopsis resulted in a significant increase of root length under stress conditions, thereby enhancing tolerance to phosphate starvation and drought stress. The wheat lines with silenced TaMYB-CC5 genes exhibited reduced root length under stress conditions and increased sensitivity to phosphate deficiency and drought stress. In addition, silencing the TaMYB-CC5 genes resulted in altered phosphorus content in leaves but did not lead to a reduction in phosphorus content in roots. Enrichment analysis the co-expression genes of TaMYB-CC5 transcription factors, we found the zinc-induced facilitator-like (ZIFL) genes were prominent associated with TaMYB-CC5 gene. The TaZIFL1, TaZIFL2, and TaZIFL5 genes were verified specifically expressed in roots and regulated by TaMYB-CC5 transcript factor. Our study reveals the pivotal role of the TaMYB-CC5 gene in regulating TaZIFL genes, which is crucial for maintaining normal root growth under phosphorus deficiency and drought stress, thereby enhanced resistance to these abiotic stresses in wheat.

9.
Front Immunol ; 15: 1431452, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139563

RESUMEN

Background: Interactions between the immune and metabolic systems may play a crucial role in the pathogenesis of metabolic syndrome-associated rheumatoid arthritis (MetS-RA). The purpose of this study was to discover candidate biomarkers for the diagnosis of RA patients who also had MetS. Methods: Three RA datasets and one MetS dataset were obtained from the Gene Expression Omnibus (GEO) database. Differential expression analysis, weighted gene co-expression network analysis (WGCNA), and machine learning algorithms including Least Absolute Shrinkage and Selection Operator (LASSO) regression and Random Forest (RF) were employed to identify hub genes in MetS-RA. Enrichment analysis was used to explore underlying common pathways between MetS and RA. Receiver operating characteristic curves were applied to assess the diagnostic performance of nomogram constructed based on hub genes. Protein-protein interaction, Connectivity Map (CMap) analyses, and molecular docking were utilized to predict the potential small molecule compounds for MetS-RA treatment. qRT-PCR was used to verify the expression of hub genes in fibroblast-like synoviocytes (FLS) of MetS-RA. The effects of small molecule compounds on the function of RA-FLS were evaluated by wound-healing assays and angiogenesis experiments. The CIBERSORT algorithm was used to explore immune cell infiltration in MetS and RA. Results: MetS-RA key genes were mainly enriched in immune cell-related signaling pathways and immune-related processes. Two hub genes (TYK2 and TRAF2) were selected as candidate biomarkers for developing nomogram with ideal diagnostic performance through machine learning and proved to have a high diagnostic value (area under the curve, TYK2, 0.92; TRAF2, 0.90). qRT-PCR results showed that the expression of TYK2 and TRAF2 in MetS-RA-FLS was significantly higher than that in non-MetS-RA-FLS (nMetS-RA-FLS). The combination of CMap analysis and molecular docking predicted camptothecin (CPT) as a potential drug for MetS-RA treatment. In vitro validation, CPT was observed to suppress the cell migration capacity and angiogenesis capacity of MetS-RA-FLS. Immune cell infiltration results revealed immune dysregulation in MetS and RA. Conclusion: Two hub genes were identified in MetS-RA, a nomogram for the diagnosis of RA and MetS was established based on them, and a potential therapeutic small molecule compound for MetS-RA was predicted, which offered a novel research perspective for future serum-based diagnosis and therapeutic intervention of MetS-RA.


Asunto(s)
Artritis Reumatoide , Biología Computacional , Aprendizaje Automático , Síndrome Metabólico , Simulación del Acoplamiento Molecular , Humanos , Síndrome Metabólico/genética , Síndrome Metabólico/diagnóstico , Artritis Reumatoide/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Mapas de Interacción de Proteínas , Redes Reguladoras de Genes , Biomarcadores , Transcriptoma
10.
Cell Rep ; 43(8): 114633, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154343

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) features substantial matrix stiffening and reprogrammed glucose metabolism, particularly the Warburg effect. However, the complex interplay between these traits and their impact on tumor advancement remains inadequately explored. Here, we integrated clinical, cellular, and bioinformatics approaches to explore the connection between matrix stiffness and the Warburg effect in PDAC, identifying CLIC1 as a key mediator. Elevated CLIC1 expression, induced by matrix stiffness through Wnt/ß-catenin/TCF4 signaling, signifies poorer prognostic outcomes in PDAC. Functionally, CLIC1 serves as a catalyst for glycolytic metabolism, propelling tumor proliferation. Mechanistically, CLIC1 fortifies HIF1α stability by curbing hydroxylation via reactive oxygen species (ROS). Collectively, PDAC cells elevate CLIC1 levels in a matrix-stiffness-responsive manner, bolstering the Warburg effect to drive tumor growth via ROS/HIF1α signaling. Our insights highlight opportunities for targeted therapies that concurrently address matrix properties and metabolic rewiring, with CLIC1 emerging as a promising intervention point.

11.
Trials ; 25(1): 538, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143596

RESUMEN

BACKGROUND: Both individuals and society bear a considerable burden from ischemic stroke (IS), not only do patients continue suffering from motor dysfunction after discharge from hospital, but their caregivers also undertake the principal responsibility of assisting them in reintegrating into the family and society. To better improve the IS patients' limb function and daily life activities, their caregivers should also be involved in the training of the motor function rehabilitation during the period transitioning from hospital back home. This study mainly aims to investigate the effects of a nurse-led training for IS patients and their family caregivers on the improvement of the patients' physical function and the burden of caregivers. METHODS/DESIGN: A randomized controlled trial with blind assessment will be conducted in hospitals and during the follow-ups at home. Fifty-eight pairs of adults diagnosed with ischemic stroke and their primary caregivers will be included. Participants will be randomly given with (1) a nurse-led, home-based motor rehabilitation training participated by caregivers (intervention group) or (2) routine self-care (control group). Both groups will receive assessment and health guidance on the day of discharge, and the intervention group will receive an additional home-based training program and supervision. These two groups will be followed up every week after discharge. The primary results are drawn from the evaluation of physical function and caregiver-related burden, and the secondary results derived from statistics of the modified Barthel index, stroke-specific quality of life, and National Institutes of Health Stroke Scale. Differences between the two groups will be measured by two-way repeated measures ANOVA, considering the data at baseline and at 1-week and 4-week follow-up after training. DISCUSSION: Results may provide novel and valuable information on the effects of this culturally appropriate, caregiver-involved, and home-based rehabilitation training on the physical function of IS patients and caregiver-related burden. TRIAL REGISTRATION: Chinese Clinical Trial Registry (chictr.org.cn) ChiCTR2300078798. Registered on December 19, 2023.


Asunto(s)
Cuidadores , Accidente Cerebrovascular Isquémico , Ensayos Clínicos Controlados Aleatorios como Asunto , Recuperación de la Función , Rehabilitación de Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Cuidadores/educación , Accidente Cerebrovascular Isquémico/rehabilitación , Accidente Cerebrovascular Isquémico/enfermería , Accidente Cerebrovascular Isquémico/fisiopatología , Femenino , Persona de Mediana Edad , Masculino , Carga del Cuidador , Factores de Tiempo , Resultado del Tratamiento , China , Adulto , Actividades Cotidianas , Anciano , Actividad Motora , Calidad de Vida , Estado Funcional
12.
Commun Biol ; 7(1): 960, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117859

RESUMEN

Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.


Asunto(s)
Trastorno Depresivo Mayor , Transcriptoma , Humanos , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/fisiopatología , Femenino , Masculino , Adulto , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Persona de Mediana Edad , Imagen por Resonancia Magnética , Perfilación de la Expresión Génica
13.
Clin Sci (Lond) ; 138(17): 1039-1054, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39136693

RESUMEN

Maternal high-fat diet intake has profound effects on the long-term health of offspring, predisposing them to a higher susceptibility to obesity and metabolic dysfunction-associated steatotic liver disease. However, the detailed mechanisms underlying the role of a maternal high-fat diet in hepatic lipid accumulation in offspring, especially at the weaning age, remain largely unclear. In this study, female C57BL/6J mice were randomly assigned to either a high-fat diet or a control diet, and lipid metabolism parameters were assessed in male offspring at weaning. Gut microbiota analysis and targeted metabolomics of short-chain fatty acids (SCFAs) in these offspring were further performed. Both in vivo and in vitro studies were conducted to explore the role of butyrate in hepatic cholesterol excretion in the liver and HepG2 cells. Our results showed that maternal high-fat feeding led to obesity and dyslipidemia, and exacerbated hepatic lipid accumulation in the livers of offspring at weaning. We observed significant decreases in the abundance of the Firmicutes phylum and the Allobaculum genus, known as producers of SCFAs, particularly butyrate, in the offspring of dams fed a high-fat diet. Additionally, maternal high-fat diet feeding markedly decreased serum butyrate levels and down-regulated ATP-binding cassette transporters G5 (ABCG5) in the liver, accompanied by decreased phosphorylated AMP-activated protein kinase (AMPK) and histone deacetylase 5 (HADC5) expressions. Subsequent in vitro studies revealed that butyrate could induce ABCG5 activation and alleviate lipid accumulation via the AMPK-pHDAC5 pathway in HepG2 cells. Moreover, knockdown of HDAC5 up-regulated ABCG5 expression and promoted cholesterol excretion in HepG2 cells. In conclusion, our study provides novel insights into how maternal high-fat diet feeding inhibits hepatic cholesterol excretion and down-regulates ABCG5 through the butyrate-AMPK-pHDAC5 pathway in offspring at weaning.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5 , Butiratos , Colesterol , Dieta Alta en Grasa , Microbioma Gastrointestinal , Hígado , Ratones Endogámicos C57BL , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Butiratos/metabolismo , Humanos , Hígado/metabolismo , Células Hep G2 , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Masculino , Colesterol/metabolismo , Colesterol/sangre , Embarazo , Ratones , Metabolismo de los Lípidos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Obesidad/metabolismo , Obesidad/microbiología , Dislipidemias/metabolismo , Dislipidemias/microbiología , Dislipidemias/etiología , Lipoproteínas
14.
Nat Protoc ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147983

RESUMEN

Nanozymes are nanomaterials with enzyme-like catalytic properties. They are attractive reagents because they do not have the same limitations of natural enzymes (e.g., high cost, low stability and difficult storage). To test, optimize and compare nanozymes, it is important to establish fundamental principles and systematic standards to fully characterize their catalytic performance. Our 2018 protocol describes how to characterize the catalytic activity and kinetics of peroxidase nanozymes, the most widely used type of nanozyme. This approach was based on Michaelis-Menten enzyme kinetics and is now updated to take into account the unique physicochemical properties of nanomaterials that determine the catalytic kinetics of nanozymes. The updated procedure describes how to determine the number of active sites as well as other physicochemical properties such as surface area, shape and size. It also outlines how to calculate the hydroxyl adsorption energy from the crystal structure using the density functional theory method. The calculations now incorporate these measurements and computations to better characterize the catalytic kinetics of peroxidase nanozymes that have different shapes, sizes and compositions. This updated protocol better describes the catalytic performance of nanozymes and benefits the development of nanozyme research since further nanozyme development requires precise control of activity by engineering the electronic, geometric structure and atomic configuration of the catalytic sites of nanozymes. The characterization of the catalytic activity of peroxidase nanozymes and the evaluation of their kinetics can be performed in 4 h. The procedure is suitable for users with expertise in nano- and materials technology.

15.
Chem Soc Rev ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148378

RESUMEN

Nanodrugs, which utilise nanomaterials in disease prevention and therapy, have attracted considerable interest since their initial conceptualisation in the 1990s. Substantial efforts have been made to develop nanodrugs for overcoming the limitations of conventional drugs, such as low targeting efficacy, high dosage and toxicity, and potential drug resistance. Despite the significant progress that has been made in nanodrug discovery, the precise design or screening of nanomaterials with desired biomedical functions prior to experimentation remains a significant challenge. This is particularly the case with regard to personalised precision nanodrugs, which require the simultaneous optimisation of the structures, compositions, and surface functionalities of nanodrugs. The development of powerful computer clusters and algorithms has made it possible to overcome this challenge through in silico methods, which provide a comprehensive understanding of the medical functions of nanodrugs in relation to their physicochemical properties. In addition, machine learning techniques have been widely employed in nanodrug research, significantly accelerating the understanding of bio-nano interactions and the development of nanodrugs. This review will present a summary of the computational advances in nanodrug discovery, focusing on the understanding of how the key interfacial interactions, namely, surface adsorption, supramolecular recognition, surface catalysis, and chemical conversion, affect the therapeutic efficacy of nanodrugs. Furthermore, this review will discuss the challenges and opportunities in computer-aided nanodrug discovery, with particular emphasis on the integrated "computation + machine learning + experimentation" strategy that can potentially accelerate the discovery of precision nanodrugs.

16.
BMC Public Health ; 24(1): 1813, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978043

RESUMEN

DATA SOURCES: The Global Burden of Diseases, Injuries, and Risk Factors study (GBD) 2019. BACKGROUND: To describe burden, and to explore cross-country inequalities according to socio-demographic index (SDI) for stroke and subtypes attributable to diet. METHODS: Death and years lived with disability (YLDs) data and corresponding estimated annual percentage changes (EAPCs) were estimated by year, age, gender, location and SDI. Pearson correlation analysis was performed to evaluate the connections between age-standardized rates (ASRs) of death, YLDs, their EAPCs and SDI. We used ARIMA model to predict the trend. Slope index of inequality (SII) and relative concentration index (RCI) were utilized to quantify the distributive inequalities in the burden of stroke. RESULTS: A total of 1.74 million deaths (56.17% male) and 5.52 million YLDs (55.27% female) attributable to diet were included in the analysis in 2019.Between 1990 and 2019, the number of global stroke deaths and YLDs related to poor diet increased by 25.96% and 74.76% while ASRs for death and YLDs decreased by 42.29% and 11.34% respectively. The disease burden generally increased with age. The trends varied among stroke subtypes, with ischemic stroke (IS) being the primary cause of YLDs and intracerebral hemorrhage (ICH) being the leading cause of death. Mortality is inversely proportional to SDI (R = -0.45, p < 0.001). In terms of YLDs, countries with different SDIs exhibited no significant difference (p = 0.15), but the SII changed from 38.35 in 1990 to 45.18 in 2019 and the RCI showed 18.27 in 1990 and 24.98 in 2019 for stroke. The highest ASRs for death and YLDs appeared in Mongolia and Vanuatu while the lowest of them appeared in Israel and Belize, respectively. High sodium diets, high red meat consumption, and low fruit diets were the top three contributors to stroke YLDs in 2019. DISCUSSION: The burden of diet-related stroke and subtypes varied significantly concerning year, age, gender, location and SDI. Countries with higher SDIs exhibited a disproportionately greater burden of stroke and its subtypes in terms of YLDs, and these disparities were found to intensify over time. To reduce disease burden, it is critical to enforce improved dietary practices, with a special emphasis on mortality drop in lower SDI countries and incidence decline in higher SDI countries.


Asunto(s)
Dieta , Carga Global de Enfermedades , Salud Global , Disparidades en el Estado de Salud , Accidente Cerebrovascular , Humanos , Masculino , Femenino , Accidente Cerebrovascular/mortalidad , Accidente Cerebrovascular/epidemiología , Persona de Mediana Edad , Anciano , Dieta/estadística & datos numéricos , Adulto , Salud Global/estadística & datos numéricos , Factores Socioeconómicos , Anciano de 80 o más Años , Adulto Joven , Adolescente , Factores de Riesgo
17.
Bioorg Chem ; 151: 107648, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032406

RESUMEN

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and remains the leading cause of cancer deaths. Much progress has been made to treat NSCLC, however, only limited patients can benefit from current treatments. Thus, more efforts are needed to pursue novel molecular modalities for NSCLC treatment. It was demonstrated that pseudo-natural products (PNP) are a critical source for antitumor drug discovery. Herein, we describe a CH activation protocol for the expedient construction of a focused library utilizing the PNP rational design strategy. This protocol features a rhodium-catalyzed CH activation/ [4+2] annulation reaction between N-OAc-indole-2-carboxamide and alkynyl quinols, enabling facile access to diverse quinol substituted ß-carboline derivatives (31 examples). The anticancer activities were assessed in vitro against NSCLC cell line A549, yielding a potent antiproliferative ß-carboline derivative (8r) with an IC50 value of 0.8 ± 0.1 µM. Further investigation revealed that this compound could decrease the expression of Caspase 3, and increase the expression of autophagic protein Cyclin B1, thus markedly inducing autophagy and apoptosis. Mechanistic study suggested that 8r could be a potent anti-NSCLC agent through the AKT/mTOR signaling pathway in A549 cells. Moreover, the anticancer activities were also assessed against three other cancer cell lines, and 8r exhibits a broader inhibitory effect on cell proliferation in all cancer cell lines tested. These results indicated that carboline-based PNPs show great potential to induce cell autophagy and apoptosis, which serve as good leads for further drug discovery.

18.
CNS Neurosci Ther ; 30(7): e14891, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39056330

RESUMEN

BACKGROUND: The prevalence of dementia around the world is increasing, and these patients are more likely to have cognitive impairments, mood and anxiety disorders (depression, anxiety, and panic disorder), and attention deficit disorders over their lifetime. Previous studies have proven that melatonin could improve memory loss, but its specific mechanism is still confused. METHODS: In this study, we used in vivo and in vitro models to examine the neuroprotective effect of melatonin on scopolamine (SCOP)-induced cognitive dysfunction. The behavioral tests were performed. 18F-FDG PET imaging was used to assess the metabolism of the brain. Protein expressions were determined through kit detection, Western blot, and immunofluorescence. Nissl staining was conducted to reflect neurodegeneration. MTT assay and RNAi transfection were applied to perform the in vitro experiments. RESULTS: We found that melatonin could ameliorate SCOP-induced cognitive dysfunction and relieve anxious-like behaviors or HT22 cell damage. 18F-FDG PET-CT results showed that melatonin could improve cerebral glucose uptake in SCOP-treated mice. Melatonin restored the cholinergic function, increased the expressions of neurotrophic factors, and ameliorated oxidative stress in the brain of SCOP-treated mice. In addition, melatonin upregulated the expression of silent information regulator 1 (SIRT1), which further relieved endoplasmic reticulum (ER) stress by decreasing the expression of phosphorylate inositol-requiring enzyme (p-IRE1α) and its downstream, X-box binding protein 1 (XBP1). CONCLUSIONS: These results indicated that melatonin could ameliorate SCOP-induced cognitive dysfunction through the SIRT1/IRE1α/XBP1 pathway. SIRT1 might be the critical target of melatonin in the treatment of dementia.


Asunto(s)
Disfunción Cognitiva , Melatonina , Escopolamina , Transducción de Señal , Sirtuina 1 , Proteína 1 de Unión a la X-Box , Melatonina/farmacología , Melatonina/uso terapéutico , Animales , Sirtuina 1/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Ratones , Masculino , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Aprendizaje por Laberinto/efectos de los fármacos
19.
Pathogens ; 13(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39057785

RESUMEN

We aimed to investigate the species composition of a small mammal community and the prevalence of Echinococcus spp. in a typical endemic area of the Tibetan Plateau. One pika and five rodent species were identified based on the morphological characteristics of 1278 small mammal specimens collected during 2014-2019. Detection of Echinococcus DNA in tissue samples from small mammal specimens revealed that Ochotona curzoniae (pika, total prevalence: 6.02%, 26/432), Neodon fuscus (5.91%, 38/643), N. leucurus (2.50%, 3/120), and Alexandromys limnophilus (21.74%, 10/46) were infected by both E. multilocularis and E. shiquicus; Cricetulus longicaudatus (16.67%, 1/6) was infected by E. shiquicus; and no infection was detected in N. irene (0/15). Neodon fuscus and O. curzoniae were the two most abundant small mammal species. There was no significant difference in the prevalence of pika and the overall rodent species assemblage (6.26%, 53/846); however, the larger rodent populations suggested that more attention should be paid to their role in the transmission of echinococcosis in the wildlife reservoir, which has long been underestimated. Moreover, although DNA barcoding provides a more efficient method than traditional morphological methods for identifying large numbers of small mammal samples, commonly used barcodes failed to distinguish the three Neodon species in this study. The close genetic relationships between these species suggest the need to develop more powerful molecular taxonomic tools.

20.
ACS Appl Mater Interfaces ; 16(31): 40894-40902, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39056581

RESUMEN

Antimony (Sb) is an attractive anode material for potassium-ion batteries (PIBs), but it suffers from aggregation during the charging-discharging process, thus causing embedded active sites and collapsed structure. The analogous chelation refers to the reaction in which the central nanoparticle is linked to the matrix through multiple coordination bonds to form a stable composite. This strategy can inhibit aggregation and maintain the nanosized structure of Sb, thus activating the utilization of Sb active sites and structural stability. Given the special position of nitrogen (N) in the periodic table of elements and the strong bond energy of Sb-N, the N element can serve as an intermediate to connect Sb nanoparticles and an intrinsic N-doped carbon network via strong Sb-N-C/Sb-N═C covalent bonds using analogous chelation. Herein, a hybrid material of Sb@CTF-NC is fabricated via analogous chelation. The Sb atoms exposed on the surface of Sb nanoparticles are used to chelate with the N-doped carbon for high-performance PIBs. The mechanism underwent ex situ characterizations. The calculation of density functional theory reveals that the increase of adsorption energy and reduction of the K+ diffusion barrier accelerate the electrochemical reaction kinetics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...