Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 215: 109011, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39128403

RESUMEN

Phosphate deficiency and drought are significant environmental constraints that impact both the productivity and quality of wheat. The interaction between phosphorus and water facilitates their mutual absorption processes in plants. Under conditions of both phosphorus deficiency and drought stress, we observed a significant upregulation in the expression of wheat MYB-CC transcription factors through the transcriptome analysis. 52 TaMYB-CC genes in wheat were identified and analyzed their evolutionary relationships, structures, and expression patterns. The TaMYB-CC5 gene exhibited specific expression in roots and demonstrated significant upregulation under phosphorus deficiency and drought stress compared to other TaMYB-CC genes. The overexpression of TaMYB-CC5A in Arabidopsis resulted in a significant increase of root length under stress conditions, thereby enhancing tolerance to phosphate starvation and drought stress. The wheat lines with silenced TaMYB-CC5 genes exhibited reduced root length under stress conditions and increased sensitivity to phosphate deficiency and drought stress. In addition, silencing the TaMYB-CC5 genes resulted in altered phosphorus content in leaves but did not lead to a reduction in phosphorus content in roots. Enrichment analysis the co-expression genes of TaMYB-CC5 transcription factors, we found the zinc-induced facilitator-like (ZIFL) genes were prominent associated with TaMYB-CC5 gene. The TaZIFL1, TaZIFL2, and TaZIFL5 genes were verified specifically expressed in roots and regulated by TaMYB-CC5 transcript factor. Our study reveals the pivotal role of the TaMYB-CC5 gene in regulating TaZIFL genes, which is crucial for maintaining normal root growth under phosphorus deficiency and drought stress, thereby enhanced resistance to these abiotic stresses in wheat.

2.
Funct Plant Biol ; 512024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39163495

RESUMEN

ERECTA (ER) is a type of receptor-like kinase that contributes a crucial mission in various aspects of plant development, physiological metabolism, and abiotic stresses responses. This study aimed to explore the functional characteristics of the SiER family genes in millet (Setaria italica L.), focusing on the growth phenotype and drought resistance of Arabidopsis overexpressed SiER4_X1 and SiER1_X4 genes (SiERs ). The results revealed that overexpression of SiER4_X1 and SiER1_X4 genes in Arabidopsis significantly enhanced the leaf number, expanded leaf length and width, further promoted the silique number, length and diameter, and plant height and main stem thickness, ultimately leading to a substantial increase in individual plant biomass. Compared to the wild-type (WT), through simulated drought stress, the expression level of SiER genes was notably upregulated, transgenic Arabidopsis seeds exhibited stronger germination rates and root development; after experiencing drought conditions, the activities of antioxidant enzymes (superoxide dismutase and peroxidase) increased, while the levels of malondialdehyde and relative electrical conductivity decreased. These results indicate that overexpression of SiERs significantly enhanced both biomass production and drought resistance in Arabidopsis . The SiER4_X1 and SiER1_X4 genes emerge as promising candidate genes for improving biomass production and drought resistance in forage plants.


Asunto(s)
Arabidopsis , Sequías , Plantas Modificadas Genéticamente , Setaria (Planta) , Arabidopsis/genética , Setaria (Planta)/genética , Plantas Modificadas Genéticamente/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Genes de Plantas , Resistencia a la Sequía
3.
BMC Psychol ; 12(1): 206, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622614

RESUMEN

'Not in My Back Yard (NIMBY)' facilities are psychologically sensitive to urban and regional development. Multi-criteria evaluation (MCE) method has been widely used for the decision-making of optimum siting of urban NIMBY facilities which aim to improve residents' psychological satisfaction. However, the evaluation of qualitative criteria in siting analysis remains under researched, such as the insufficient focus on urban and regional spatial development, social public opinion, and psychological factors. Thus, the effective improvement of MCE method through an interdisciplinary view can optimise the decision process and advance the factor assessment system of siting, which helps to supplement qualitative criteria evaluation. The specific improvement steps are as follows. The first step is to introduce the mixed MCE method to improve the qualitative criteria evaluation method by pre-processing qualitative criteria with min-max standardisation and normalization. This process transfers all negative factors to positive ones and transforms the F function to linear functions. The second step is to optimise the existing two-phase siting decision-making including the feasibility evaluation phase and the MCE phase. The third step is to propose a modular criteria system composed of urban and regional spatial planning, social psychological factors and the corresponding improvement strategy of this system from three perspectives of composition, measure, and weight. We argue that the improved method could be broadly applied to optimum siting decision of urban NIMBY facilities and enhance the psychological satisfaction of residents.


Asunto(s)
Opinión Pública , Humanos
4.
Front Plant Sci ; 15: 1320844, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660439

RESUMEN

Introduction: Sorghum plant color is the leaf sheath/leaf color and is associated with seed color, tannin and phenol content, head blight disease incidence, and phytoalexin production. Results: In this study, we evaluated plant color of the sorghum mini core collection by scoring leaf sheath/leaf color at maturity as tan, red, or purple across three testing environments and performed genome-wide association mapping (GWAS) with 6,094,317 SNPs markers. Results and Discussion: Eight loci, one each on chromosomes 1, 2, 4, and 6 and two on chromosomes 5 and 9, were mapped. All loci contained one to three candidate genes. In qPC5-1, Sobic.005G165632 and Sobic.005G165700 were located in the same linkage disequilibrium (LD) block. In qPC6, Sobic.006G149650 and Sobic.006G149700 were located in the different LD block. The single peak in qPC6 covered one gene, Sobic.006G149700, which was a senescence regulator. We found a loose correlation between the degree of linkage and tissue/organ expression of the underlying genes possibly related to the plant color phenotype. Allele analysis indicated that none of the linked SNPs can differentiate between red and purple accessions whereas all linked SNPs can differentiate tan from red/purple accessions. The candidate genes and SNP markers may facilitate the elucidation of plant color development as well as molecular plant breeding.

5.
Hum Cell ; 36(6): 1865-1876, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37592109

RESUMEN

A circular RNA (circRNA) is a non-coding RNA (ncRNA) derived from reverse splicing from pre-mRNA and is characterized by the absence of a cap structure at the 5' end and a poly-adenylated tail at the 3' end. Owing to the development of RNA sequencing and bioinformatics approaches in recent years, the important clinical value of circRNAs has been increasingly revealed. Circ_0067934 is an RNA molecule of 170 nucleotides located on chromosome 3q26.2. Circ_0067934 is formed via the reverse splicing of exons 15 and 16 in PRKCI (protein kinase C Iota). Recent studies revealed the upregulation or downregulation of circ_0067934 in various tumors. The expression of circ_0067934 was found to be correlated with tumor size, TNM stage, and poor prognosis. Based on experiments with cancer cells, circ_0067934 promotes cancer cell proliferation, migratory activity, and invasion when overexpressed or downregulated. The potential mechanism involves the binding of circ_0067934 to microRNAs (miRNAs; miR-545, miR-1304, miR-1301-3p, miR-1182, miR-7, and miR-1324) to regulate the post-transcriptional expression of genes. Other mechanisms include inhibition of the Wnt/ß-catenin and PI3K/AKT signaling pathways. Here, we summarized the biological functions and possible mechanisms of circ_0067934 in different tumors to enable further exploration of its translational applications in clinical diagnosis, therapy, and prognostic assessments.

6.
Int J Biol Macromol ; 246: 125694, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37414309

RESUMEN

Adaptation to drought and salt stresses is a fundamental part of plant cell physiology and is of great significance for crop production under environmental stress. Heat shock proteins (HSPs) are molecular chaperones that play a crucial role in folding, assembling, translocating, and degrading proteins. However, their underlying mechanisms and functions in stress tolerance remain elusive. Here, we identified the HSP TaHSP17.4 in wheat by analyzing the heat stress-induced transcriptome. Further analysis showed that TaHSP17.4 was significantly induced under drought, salt, and heat stress treatments. Intriguingly, yeast-two-hybrid analysis showed that TaHSP17.4 interacts with the HSP70/HSP90 organizing protein (HOP) TaHOP, which plays a significant role in linking HSP70 and HSP90. We found that TaHSP17.4- and TaHOP-overexpressing plants have a higher proline content and a lower malondialdehyde content than wild-type plants under stress conditions and display strong tolerance to drought, salt, and heat stress. Additionally, qRT-PCR analysis showed that stress-responsive genes relevant to reactive oxygen species scavenging and abscisic acid signaling pathways were significantly induced in TaHSP17.4- and TaHOP-overexpressing plants under stress conditions. Together, our findings provide insight into HSP functions in wheat and two novel candidate genes for improvement of wheat varieties.


Asunto(s)
Proteínas de Plantas , Triticum , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/metabolismo , Cloruro de Sodio/farmacología , Regulación de la Expresión Génica de las Plantas , Sequías
7.
Plant Genome ; 16(3): e20345, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37259688

RESUMEN

Melilotus officinalis is an important legume crop with forage and Chinese medicinal value. The unknown genome of M. officinalis restricted the domestication and utilization of the species and its germplasm resource diversity. A chromosome-scale assembly of the M. officinalis genome was assembled and analysed. The 976.27 Mb of genome was divided into eight chromosomes covering 99.16% of the whole genome. A total of 50022 genes were predicted in the genome. M. officinalis and Melilotus albus shared a common ancestor 0.5-5.65 million years ago (MYA). A genome-wide doubling event occurred 68.93 MYA according to the synonymous nucleotide-substitution values. A total of 552102 tandem repeats were predicted, and 46004 SSR primers of TRs with 10 or more base pairs were developed and designed. The elucidation of the M. officinalis genome provides a compelling model system for studying the genetic, evolutionary and biosynthesis of this legume.


Asunto(s)
Fabaceae , Melilotus , Melilotus/genética , Fabaceae/genética , Genoma de Planta , Cromosomas
8.
Theor Appl Genet ; 136(3): 60, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36912984

RESUMEN

KEY MESSAGE: Sudangrass is more similar to US commercial sorghums than to cultivated sorghums from Africa sequence-wise and contain significantly lower dhurrin than sorghums. CYP79A1 is linked to dhurrin content in sorghum. Sudangrass [Sorghum sudanense (Piper) Stapf] is a hybrid between grain sorghum and its wild relative S. bicolor ssp. verticilliflorum and is grown as a forage crop due to its high biomass production and low dhurrin content compared to sorghum. In this study, we sequenced the sudangrass genome and showed that the assembled genome was 715.95 Mb with 35,243 protein-coding genes. Phylogenetic analysis with whole genome proteomes demonstrated that the sudangrass genome was more similar to US commercial sorghums than to its wild relatives and cultivated sorghums from Africa. We confirmed that at seedling stage, sudangrass accessions contained significantly lower dhurrin as measured by hydrocyanic acid potential (HCN-p) than cultivated sorghum accessions. Genome-wide association study identified a QTL most tightly associated with HCN-p and the linked SNPs were located in the 3' UTR of Sobic.001G012300 which encodes CYP79A1, the enzyme that catalyzes the first step of dhurrin biosynthesis. As in other grasses such as maize and rice, we also found that copia/gypsy long terminal repeat (LTR) retrotransposons were more abundant in cultivated than in wild sorghums, implying that crop domestication in the grasses was accompanied by increased copia/gypsy LTR retrotransposon insertions in the genomes.


Asunto(s)
Sorghum , Sorghum/genética , Filogenia , Estudio de Asociación del Genoma Completo , Cromosomas , Evolución Molecular
9.
PeerJ ; 10: e14452, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518287

RESUMEN

Foxtail millet is commonly used as a food and forage grass. ERECTA (ER) is a receptor-like kinase that can improve plant biomass and stress resistance. The sorghum SbER10_X1 gene was used as a probe to identify ER family genes on the Setaria italica genomes (SiERs), and determine the characteristics of the SiERs family. Herein, the structural features, expression patterns, and thermotolerance of SiERs function were identified by bioinformatics analysis, real-time PCR and transgenesis estimation. Results showed that SiERs had four members: two members were located on chromosome 1 with a total of six copies (SiER1_X1, SiER1_X2, SiER1_X3, SiER1_X4, SiER1_X5, and SiER1_X6), and two were on chromosome 4, namely, SiER4 (SiER4_X1 and SiER4_X2) and SiERL1. Among them, SiER1_X4 and SiER4_X1 were expressed highest in above-ground organs of foxtail millet, and actively responded to treatments with abscisic acid, brassinolide, gibberellin, and indole acetic acid. After overexpression of SiER1_X4 and SiER4_X1 in Arabidopsis, the plant height and biomass of the transgenic Arabidopsis significantly increased. Following high-temperature treatment, transgenic seedlings survived better compared to wild type. Transgenic lines showed higher SOD and POD activities, and expression level of AtHSF1 and AtBl1 genes significantly increased. These results indicated that SiER1_X4 and SiER4_X1 played important regulatory roles in plant growth and thermotolerance. The two genes provide potential targets for conventional breeding or biotechnological intervention to improve the biomass of forage grass and thermotolerance of field crops.


Asunto(s)
Arabidopsis , Setaria (Planta) , Termotolerancia , Arabidopsis/genética , Setaria (Planta)/genética , Proteínas de Plantas/genética , Termotolerancia/genética , Biomasa , Fitomejoramiento
10.
Front Plant Sci ; 13: 844545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548296

RESUMEN

Tubby-like proteins (TLPs) are transcription factors that are widely present in eukaryotes and generally participate in growth and developmental processes. Using genome databases, a total of 22 putative TLP genes were identified in the soybean genome, and unevenly distributed across 13 chromosomes. Phylogenetic analysis demonstrated that the predicted GmTLP proteins were divided into five groups (I-V). Gene structure, protein motifs, and conserved domains were analyzed to identify differences and common features among the GmTLPs. A three-dimensional protein model was built to show the typical structure of TLPs. Analysis of publicly available gene expression data showed that GmTLP genes were differentially expressed in response to abiotic stresses. Based on those data, GmTLP8 was selected to further explore the role of TLPs in soybean drought and salt stress responses. GmTLP8 overexpressors had improved tolerance to drought and salt stresses, whereas the opposite was true of GmTLP8-RNAi lines. 3,3-diaminobenzidine and nitro blue tetrazolium staining and physiological indexes also showed that overexpression of GmTLP8 enhanced the tolerance of soybean to drought and salt stresses; in addition, downstream stress-responsive genes were upregulated in response to drought and salt stresses. This study provides new insights into the function of GmTLPs in response to abiotic stresses.

11.
Front Plant Sci ; 12: 614909, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815437

RESUMEN

Abiotic stresses, such as drought and salinity, severely affects the growth, development and productivity of the plants. The Catharanthus roseus RLK1-like (CrRLK1L) protein kinase family is involved in several processes in the plant life cycle. However, there have been few studies addressing the functions of CrRLK1L proteins in soybean. In this study, 38 CrRLK1L genes were identified in the soybean genome (Glycine max Wm82.a2.v1). Phylogenetic analysis demonstrated that soybean CrRLK1L genes were grouped into clusters, cluster I, II, III. The chromosomal mapping demonstrated that 38 CrRLK1L genes were located in 14 of 20 soybean chromosomes. None were discovered on chromosomes 1, 4, 6, 7, 11, and 14. Gene structure analysis indicated that 73.6% soybean CrRLK1L genes were characterized by a lack of introns.15.7% soybean CrRLK1L genes only had one intron and 10.5% soybean CrRLK1L genes had more than one intron. Five genes were obtained from soybean drought- and salt-induced transcriptome databases and were found to be highly up-regulated. GmCrRLK1L20 was notably up-regulated under drought and salinity stresses, and was therefore studied further. Subcellular localization analysis revealed that the GmCrRLK1L20 protein was located in the cell membrane. The overexpression of the GmCrRLK1L20 gene in soybean hairy roots improved both drought tolerance and salt stresses and enhanced the expression of the stress-responsive genes GmMYB84, GmWRKY40, GmDREB-like, GmGST15, GmNAC29, and GmbZIP78. These results indicated that GmCrRLK1L20 could play a vital role in defending against drought and salinity stresses in soybean.

12.
PeerJ ; 8: e10077, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33083135

RESUMEN

Protoplasts are commonly used in genetic and breeding research. In this study, the isolation of sorghum protoplasts was optimized and applied to transient gene expression and editing by CRISPR/Cas9. The protoplast was most viable in 0.5 M mannitol, which was the highest of three concentrations after 48- and 72-hours treatments. Using this method we can derive an average of 1.6×106 cells which vary from 5 to 22 nm in size. The average transfection of the protoplasts was 68.5% using the PEG-mediated method. The subcellular assays located Sobic.002G279100-GFP and GFP proteins in the cell compartments as predicted bioinformatically. Two CRISPR/Cas9 plasmids were transfected into sorghum protoplasts to screen for an appropriate sgRNA for gene editing. One plasmid can correctly edit the target region using a single protoplast cell as template DNA. Our results indicated that the protoplast assays as optimized are suitable for transient gene expression and sgRNA screening in CRISPR/Cas9 gene editing procedures.

13.
Zootaxa ; 4722(3): zootaxa.4722.3.7, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-32230628

RESUMEN

A new species of the genus Limnophyes Eaton, 1875 from Xizang, China is described and figured based on adult males. Limnophyes nudus sp. nov. belongs to the minimus group and can be easily separated from other species by antenna with 13 flagellomeres, higher AR of 0.85-1.00, bluntly triangular anal point, phallapodeme with ring-like appendix, inferior volsella bare and gonostylus with bubble-like inner margin.


Asunto(s)
Chironomidae , Dípteros , Animales , China , Masculino
14.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245276

RESUMEN

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


Asunto(s)
Deshidratación/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Tolerancia a la Sal/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Deshidratación/genética , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Malondialdehído/metabolismo , Peroxidasa/genética , Peroxidasa/metabolismo , Filogenia , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Elementos Reguladores de la Transcripción/genética , Estrés Salino/genética , Plantones/genética , Plantones/metabolismo , Glycine max/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factores de Transcripción/genética
15.
BMC Plant Biol ; 19(1): 506, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31747904

RESUMEN

BACKGROUND: Ethylene-responsive factors (ERFs) play important roles in plant growth and development and the response to adverse environmental factors, including abiotic and biotic stresses. RESULTS: In the present study, we identified 160 soybean ERF genes distributed across 20 chromosomes that could be clustered into eight groups based on phylogenetic relationships. A highly ABA-responsive ERF gene, GmERF75, belonging to Group VII was further characterized. Subcellular localization analysis showed that the GmERF75 protein is localized in the nucleus, and qRT-PCR results showed that GmERF75 is responsive to multiple abiotic stresses and exogenous hormones. GmERF75-overexpressing Arabidopsis lines showed higher chlorophyll content compared to WT and mutants under osmotic stress. Two independent Arabidopsis mutations of AtERF71, a gene homologous to GmERF75, displayed shorter hypocotyls, and overexpression of GmERF75 in these mutants could rescue the short hypocotyl phenotypes. Overexpressing GmERF75 in soybean hairy roots improved root growth under exogenous ABA and salt stress. CONCLUSIONS: These results suggested that GmERF75 is an important plant transcription factor that plays a critical role in enhancing osmotic tolerance in both Arabidopsis and soybean.


Asunto(s)
Glycine max/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Etilenos/metabolismo , Expresión Génica , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/fisiología , Presión Osmótica , Fenotipo , Filogenia , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Glycine max/crecimiento & desarrollo , Glycine max/fisiología , Estrés Fisiológico , Factores de Transcripción/genética
16.
Int J Mol Sci ; 20(22)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739570

RESUMEN

The WRKY transcription factor superfamily is known to participate in plant growth and stress response. However, the role of this family in wheat (Triticum aestivum L.) is largely unknown. Here, a salt-induced gene TaWRKY13 was identified in an RNA-Seq data set from salt-treated wheat. The results of RT-qPCR analysis showed that TaWRKY13 was significantly induced in NaCl-treated wheat and reached an expression level of about 22-fold of the untreated wheat. Then, a further functional identification was performed in both Arabidopsis thaliana and Oryza sativa L. Subcellular localization analysis indicated that TaWRKY13 is a nuclear-localized protein. Moreover, various stress-related regulatory elements were predicted in the promoter. Expression pattern analysis revealed that TaWRKY13 can also be induced by polyethylene glycol (PEG), exogenous abscisic acid (ABA), and cold stress. After NaCl treatment, overexpressed Arabidopsis lines of TaWRKY13 have a longer root and a larger root surface area than the control (Columbia-0). Furthermore, TaWRKY13 overexpression rice lines exhibited salt tolerance compared with the control, as evidenced by increased proline (Pro) and decreased malondialdehyde (MDA) contents under salt treatment. The roots of overexpression lines were also more developed. These results demonstrate that TaWRKY13 plays a positive role in salt stress.


Asunto(s)
Tolerancia a la Sal/genética , Factores de Transcripción/genética , Triticum/genética , Triticum/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica/métodos , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Elementos de Respuesta , Estrés Fisiológico/genética
17.
Front Plant Sci ; 10: 940, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396249

RESUMEN

Abscisic acid (ABA) mediates various abiotic stress responses, and ethylene responsive factors (ERFs) play vital role in resisting stresses, but the interaction of these molecular mechanisms remains elusive. In this study, we identified an ABA-induced soybean ERF gene GmERF135 that was highly up-regulated by ethylene (ET), drought, salt, and low temperature treatments. Subcellular localization assay showed that the GmERF135 protein was targeted to the nucleus. Promoter cis-acting elements analysis suggested that numerous potential stress responsive cis-elements were distributed in the promoter region of GmERF135, including ABA-, light-, ET-, gibberellin (GA)-, and methyl jasmonate (MeJA)-responsive elements. Overexpression of GmERF135 in Arabidopsis enhanced tolerance to drought and salt conditions. In addition, GmERF135 promoted the growth of transgenic hairy roots under salt and exogenous ABA conditions. These results suggest that soybean GmERF135 may participate in both ABA and ET signaling pathways to regulate the responses to multiple stresses.

18.
Int J Mol Sci ; 20(12)2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31248195

RESUMEN

Growing evidence indicates that elongation factor 1α (EF1α) is involved in responses to various abiotic stresses in several plant species. Soybean EF1α proteins include three structural domains: one GTP-binding domain and two oligonucleotide binding domains that are also called as domain 2 and domain 3. In this study, 10 EF1α genes were identified in the soybean genome. We predicted structures of different domains and analyzed gene locations, gene structures, phylogenetic relationships, various cis-elements, and conserved domains of soybean EF1αs. The expression patterns of 10 EF1α genes were analyzed by quantitative real-time PCR (qRT-PCR). Under drought stress, soybean EF1α genes were upregulated in varying degrees. In particular, GmEF4 was upregulated under drought and salt treatments. Compared to the drought- and salt-treated empty vector (EV)-control plants, drought- and salt-treated GmEF4-overexpressing (OE) plants had significantly delayed leaf wilting, longer root, higher biomass, higher proline (Pro) content, and lower H2O2, O2-, and malondialdehyde (MDA) contents. Thus, this study provides a foundation for further functional genomics research about this important family under abiotic stress.


Asunto(s)
Sequías , Glycine max/fisiología , Tolerancia a la Sal , Estrés Fisiológico , Factores de Elongación Transcripcional/metabolismo , Sitios de Unión , Mapeo Cromosómico , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Fenotipo , Filogenia , Proteínas de Plantas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Elementos de Respuesta , Glycine max/química , Relación Estructura-Actividad , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética
19.
Phys Rev Lett ; 119(22): 227208, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29286810

RESUMEN

α-RuCl_{3} is a leading candidate material for the observation of physics related to the Kitaev quantum spin liquid (QSL). By combined susceptibility, specific-heat, and nuclear-magnetic-resonance measurements, we demonstrate that α-RuCl_{3} undergoes a quantum phase transition to a QSL in a magnetic field of 7.5 T applied in the ab plane. We show further that this high-field QSL phase has gapless spin excitations over a field range up to 16 T. This highly unconventional result, unknown in either Heisenberg or Kitaev magnets, offers insight essential to establishing the physics of α-RuCl_{3}.

20.
Cell Mol Neurobiol ; 37(4): 655-664, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27412761

RESUMEN

Oxidative stress-induced neuronal apoptosis plays an important role in many neurodegenerative disorders. In this study, we have shown that indirubin-3-oxime, a derivative of indirubin originally designed for leukemia therapy, could prevent hydrogen peroxide (H2O2)-induced apoptosis in both SH-SY5Y cells and primary cerebellar granule neurons. H2O2 exposure led to the increased activities of glycogen synthase kinase 3ß (GSK3ß) and extracellular signal-regulated kinase (ERK) in SH-SY5Y cells. Indirubin-3-oxime treatment significantly reversed the altered activity of both the PI3-K/Akt/GSK3ß cascade and the ERK pathway induced by H2O2. In addition, both GSK3ß and mitogen-activated protein kinase inhibitors significantly prevented H2O2-induced neuronal apoptosis. Moreover, specific inhibitors of the phosphoinositide 3-kinase (PI3-K) abolished the neuroprotective effects of indirubin-3-oxime against H2O2-induced neuronal apoptosis. These results strongly suggest that indirubin-3-oxime prevents H2O2-induced apoptosis via concurrent inhibiting GSK3ß and the ERK pathway in SH-SY5Y cells, providing support for the use of indirubin-3-oxime to treat neurodegenerative disorders caused or exacerbated by oxidative stress.


Asunto(s)
Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Indoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...