RESUMEN
BACKGROUND: The post COVID-19 health condition of Chinese residents infected with Omicron is not clear after the change of epidemic prevention policies. This study aimed to clarify the epidemiology and associated factors about health status of rehabilitation patients. METHODS: A quick questionnaire study based on C19-YRSm was conducted in mainland China through internet from May 1, 2023, to May 7, 2023. Chinese native speakers infected with Omicron variant agreed to participate were included. Persisting symptom and living habits were simultaneously inquired. Logistic regression analysis was used to identify the associated factors. RESULTS: In this study 753 individuals were included. Of whom 57.90% were males, 89.38% did not seek medical service, 99.47% recovered within less than 120 days. Breathlessness (47.68%), cognitive impairment (44.89%), Anxiety/mood changes (33.20%), pain/discomfort (32.94%), fatigue or tiredness not improved by rest (32.27%) and post-exertional malaise (30.01%) were the top reported key symptoms. Less than 10% respondents reported functional limitations. The prevalence of fever was reported greater than that of other symptoms, with dry eyes at 14.87%, appetite change at 14.34%, and hair loss at 12.22%. Middle age (OR: 2.353, 95%CI: 1.171 ~ 4.729), underlying diseases (OR: 2.293, 95%CI: 1.216 ~ 4.324), severe key symptom (OR: 6.168, 95%CI: 1.376 ~ 27.642) and at least one other symptom (OR: 1.847, 95%CI: 1.225 ~ 2.718)during the recovery were the risk factors of poor overall health after infection (current overall health score <8; 74.10%), while daily exercise in recovery period (OR: 0.457, 95%CI: 0.229 ~ 0.913), a low-fat diet (OR: 0.600, 95%CI: 0.401 ~ 0.898) and the recovery time from 2 to 4 months (OR: 0.639, 95%CI: 0.445 ~ 0.918) were the protective factors. CONCLUSION: This is the first time to use the C19-YRSm scale to evaluate the health status in China. The study revealed prevalence of persistent symptoms within 120 days after Omicron onset.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , China/epidemiología , Masculino , Femenino , Estudios Transversales , Adulto , Persona de Mediana Edad , Encuestas y Cuestionarios , Adulto Joven , Anciano , Estado de Salud , Adolescente , PandemiasRESUMEN
OBJECTIVE: To assess the validity of Xpert Tuberculosis Fingerstick score for monitoring treatment response and analyze factors influencing its performance. METHODS: 122 adults with pulmonary tuberculosis were recruited and stratified into three cohorts: Diabetic-drug-susceptible-TB (DM-TB), Non-diabetic-drug-susceptible-TB (NDM-TB) and Non-diabetic Multidrug-resistant TB (MDR-TB). Fingerstick blood specimens were tested at treatment initiation (M0) and the end of the first (M1), second (M2), and sixth month (M6) to generate a TB-score. RESULTS: The TB-score in all participants yielded an AUC of 0.707 (95% CI: 0.579-0.834) at M2 when its performance was evaluated against sputum culture conversion. In all non-diabetes patients, the AUC reached 0.88 (95% CI: 0.756-1.000) with an optimal cut-off value of 1.95 at which sensitivity was 90.0% (95% CI: 59.6-98.2%) and specificity was 81.3% (95% CI: 70.0-88.9%). The mean TB score was higher in patients with low bacterial loads (n = 31) than those with high bacterial loads (n = 91) at M0, M1, M2, and M6, and was higher in non-cavitary patients (n = 71) than those with cavitary lesions (n = 51) at M0, M1, and M2. CONCLUSION: Xpert TB-score shows promising predictive value for culture conversion in non-diabetic TB patients. Sputum bacterial load and lung cavitation status have an influence on the value of TB score.
Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Valor Predictivo de las Pruebas , Esputo , Tuberculosis Pulmonar , Humanos , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/microbiología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/genética , Esputo/microbiología , Monitoreo de Drogas/métodos , Resultado del Tratamiento , Reproducibilidad de los Resultados , Anciano , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/sangre , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Factores de Tiempo , Biomarcadores/sangre , Perfilación de la Expresión Génica/métodos , Adulto JovenRESUMEN
Graphene oxide (GO)-based laminar membranes are promising candidates for next-generation nanofiltration membranes because of their theoretically frictionless nanochannels. However, nonuniform stacking during the filtration process and the inherent swelling of GO nanosheets generate horizontal and vertical defects, leading to a low selectivity and susceptibility to pore blockage. Herein, both types of defects are simultaneously patching by utilizing tannic acid and Feâ ¢. Tannic acid first partially reduced the upper GO framework, and then coordinated with Feâ ¢ to form a metal-polyphenol network covering horizontal defects. Due to the enhanced steric hindrance, the resulting membrane exhibited a two-fold increase in sulfonamide contaminants exclusion compared to the pristine GO membrane. A non-significant reduction in permeance was observed. In terms of fouling control, shielding defects significantly alleviated the irreversible pore blockage of the membrane. Additionally, the hydrophilic metal-polyphenol network weakened the adhesion force between the membrane and foulants, thereby improving the reversibility of fouling in the cleaning stage. This work opens up a new way to develop GO-based membranes with enhanced separation performance and antifouling ability.
RESUMEN
Two-dimensional (2D) material revolutionarily extends the technique capability of traditional nanopore/nanogap-based DNA sequencing devices. However, challenges associated with DNA sequencing on nanopores still remained in improving the sensitivity and specificity. Herein, by first-principles calculation, we theoretically studied the potential of transition-metal elements (Cr, Fe, Co, Ni, and Au) anchored on monolayer black phosphorene (BP) to act as all-electronic DNA sequencing devices. The spin-polarized band structures appeared in Cr-, Fe-, Co-, and Au-doped BP. Remarkably, the adsorption energy of nucleobases can be significantly enhanced on BP with Co, Fe, and Cr doping, which contribute to the enlarged current signal and lower noise levels. Furthermore, the order of nucleobases in terms of their adsorption energies onto the Cr@BP is C > A > G > T, which exhibits more distinct adsorption energies than Fe@BP or Co@BP. Therefore, Cr-doped BP is more effective to avoid ambiguity in recognizing various bases. We thus envisaged a possibility of a highly sensitive and selective DNA sequencing device based on phosphorene.
RESUMEN
During the fabrication of thin film composite (TFC) membranes by interfacial polymerization (IP), the utilization of salt additives is one of the effective methods to regulate membrane properties and performance. Despite gradually receiving widespread attention for membrane preparation, the strategies, effects and underlying mechanisms of using salt additives have not yet been systematically summarized. This review for the first time provides an overview of various salt additives used to tailor properties and performance of TFC membranes for water treatment. By classifying salt additives into organic and inorganic salts, the roles of added salt additives in the IP process and the induced changes in membrane structure and properties are discussed in detail, and the different mechanisms of salt additives affecting membrane formation are summarized. Based on these mechanisms, the salt-based regulation strategies have shown great potential for improving the performance and application competitiveness of TFC membranes, including overcoming the trade-off relationship between water permeability and salt selectivity, tailoring membrane pore size distribution for precise solute-solute separation, and enhancing membrane antifouling performance. Finally, future research directions are suggested to focus on the long-term stability assessment of salt-modified membranes, the combined use of different salt additives, and the integration of salt regulation with other membrane design or modification strategies.
Asunto(s)
Membranas Artificiales , Nylons , Nylons/química , Permeabilidad , Cloruro de Sodio , PolimerizacionRESUMEN
Effective recovery of dyes and salts from textile wastewater by nanofiltration (NF) remains a serious challenge due to the high consumption of water and energy caused by the limited performance of the available membranes. Herein, a novel strategy is described to prepare loose polyester NF membranes by using renewable quercetin as the aqueous monomer for fractionation of high salinity textile wastewater with minimal water and energy consumption. Compared with NF270, taken as the reference membrane, the QE-0.2/TMC-0.2 membrane significantly improved the efficiency for dye/salt fractionation by 288%. The water consumption was also decreased by 42.9%. The efficiency is attributed to an ultrahigh water permeance of 198 ± 2.1 L-1 m-2 h-1 bar-1 with a high selectivity of 123 (extremely low NaCl rejection of 1.6% and high Congo red rejection of 99.2%). The optimal quercetin-based membrane had an ultrathin separation layer of about 39 ± 1.2 nm with good hydrophilicity and negative charge density. Moreover, this work includes a novel method of comparison with a theoretically ideal membrane, which shows that both the energy and water consumption are near their theoretical minimum. This strategy is expected to save energy and minimize carbon emissions for membrane-based wastewater treatment systems.
Asunto(s)
Aguas Residuales , Agua , Quercetina , Salinidad , Membranas Artificiales , Cloruro de Sodio , Colorantes , TextilesRESUMEN
Hemophagocytic syndrome (HPS) is a critical syndrome of ineffective hyperinflammatory immune response resulting in infiltration of lymphocytes and histiocytes in various organs. Causes can be hereditary or due to malignancy, autoimmune disease, or infection. HPS due to Mycobacterium tuberculosis is rare as only a handful of cases are reported, and they are mostly associated with severe disseminated tuberculosis (TB). We reported a 9-year-old boy with tuberculosis of the bone marrow accompanied with hemophagocytic syndrome. The patient presented with manifestation of HPS and had no respiratory symptoms or risk factors for TB but was later diagnosed of isoniazid-resistant TB in the bone marrow. He had a good outcome after receiving anti-TB drugs and corticosteroids on time. This case highlights that bone marrow might be a shelter for Mycobacterium tuberculosis. Concurrent testing for drug susceptibility in TB cases with an uncommon manifestation is recommended even for first episodes. Early diagnosis and etiological confirmation of the infection origin and appropriate treatment are essential to improve survival in this otherwise life-threatening condition.
RESUMEN
YSZ has been widely used as a TBC material, but its phase change at high temperatures limits its development, thus the need for developing new thermal barrier materials resistant to high temperatures. Rare-earth aluminate ceramics with a garnet structure (Yb3Al5O12) have been considered as a potential thermal barrier material. The melting point of Yb3Al5O12 is 2000 °C, which has a potential high temperature application prospect. However, Yb3Al5O12 has lower thermal expansion and higher thermal conductivity than YSZ, which is a widely employed thermal barrier coating (TBC) material. To overcome these obstacles, (Y0.2Dy0.2Ho0.2Er0.2Yb0.2)3Al5O12, a high-entropy ceramic, was prepared by a solid-state reaction and pressureless sintering. The thermal conductivity of the (Y0.2Dy0.2Ho0.2Er0.2Yb0.2)3Al5O12 was 3.48 W/(m·K) at 300 K, approximately 25.48% lower than that of the Yb3Al5O12 (4.67 W/(m·K)). The thermal expansion coefficient of the (Y0.2Dy0.2Ho0.2Er0.2Yb0.2)3Al5O12 was 9.28 × 10-6 K-1 at 673-1273 K, approximately 18.52% higher than that of the Yb3Al5O12 (7.83 × 10-6 K-1, 673-1273 K). When the (Y0.2Dy0.2Ho0.2Er0.2Yb0.2)3Al5O12 was annealed at 1550 °C for 7 days, its average grain size only increased from 0.7 µm to 1.3 µm. Moreover, the (Y0.2Dy0.2Ho0.2Er0.2Yb0.2)3Al5O12 exhibited better chemical stability and a lower grain growth rate than the Yb3Al5O12. This study reveals that (Y0.2Dy0.2Ho0.2Er0.2Yb0.2)3Al5O12 is a promising candidate for the future generation of thermal barrier materials.
RESUMEN
Conventional polyamide (PA) nanofiltration (NF) membranes can readily adsorb aromatic compounds, such as endocrine disrupting compounds (EDCs). Therefore, these substances can easily be transported across the membrane by solution-diffusion, resulting in a poor EDC-rejection. In this work, a novel thin film nanocomposite (TFN) membrane was fabricated by incorporating covalent organic frameworks (COFs) into the PA layer via an interfacial polymerization reaction. COFs with functional groups can provide abundant active binding sites for highly efficient EDC-capture. The rejection of the optimal TFN-COF membrane for bisphenol A, bisphenol AF, and sodium 2-biphenylate was 98.3%, 99.1%, and 99.3%, respectively, which was much higher than of the rejection of the pristine NF-membrane (82.4%, 95.5%, and 96.4%, respectively). Additionally, the TFN-COF membrane could be regenerated fast and efficiently by washing with ethanol for some minutes. COF nanofillers with porous structures provide additional water channels, making it possible to overcome the permeability-selectivity trade-off of NF membranes. The water permeance (17.1 L m-2 h-1 bar-1) of the optimal membrane was about two times higher than for the pristine NF-membrane (8.7 L m-2 h-1 bar-1). In addition, the TFN-COF membrane with a COF-loading of 0.05% w/v had an excellent Na2SO4 rejection (95.2%) due to size exclusion and strong Donnan effect. This work combines traditional NF membranes and adsorption materials to achieve efficient capture and rapid release of EDCs without sacrificing salt rejections, which opens the door to develop fit-for-purpose adsorptive NF membranes.
Asunto(s)
Estructuras Metalorgánicas , Nanocompuestos , Purificación del Agua , Nylons , Nanocompuestos/química , Membranas ArtificialesRESUMEN
Rationale: Protein palmitoylation is tightly related to tumorigenesis or tumor progression as many oncogenes or tumor suppressors are palmitoylated. AEG-1, an oncogene, is commonly elevated in a variety of human malignancies, including hepatocellular carcinoma (HCC). Although AEG-1 was suggested to be potentially modified by protein palmitoylation, the regulatory roles of AEG-1 palmitoylation in tumor progression of HCC has not been explored. Methods: Techniques as Acyl-RAC assay and point mutation were used to confirm that AEG-1 is indeed palmitoylated. Moreover, biochemical experiments and immunofluorescent microscopy were applied to examine the cellular functions of AEG-1 palmitoylation in several cell lines. Remarkably, genetically modified knock-in (AEG-1-C75A) and knockout (Zdhhc6-KO) mice were established and subjected to the treatment of DEN to induce the HCC mice model, through which the roles of AEG-1 palmitoylation in HCC is directly addressed. Last, HCQ, a chemical compound, was introduced to prove in principal that elevating the level of AEG-1 palmitoylation might benefit the treatment of HCC in xenograft mouse model. Results: We showed that AEG-1 undergoes palmitoylation on a conserved cysteine residue, Cys-75. Blocking AEG-1 palmitoylation exacerbates the progression of DEN-induced HCC in vivo. Moreover, it was demonstrated that AEG-1 palmitoylation is dynamically regulated by zDHHC6 and PPT1/2. Accordingly, suppressing the level of AEG-1 palmitoylation by the deletion of Zdhhc6 reproduces the enhanced tumor-progression phenotype in DEN-induced HCC mouse model. Mechanistically, we showed that AEG-1 palmitoylation adversely regulates its protein stability and weakens AEG-1 and staphylococcal nuclease and tudor domain containing 1 (SND1) interaction, which might contribute to the alterations of the RISC activity and the expression of tumor suppressors. For intervention, HCQ, an inhibitor of PPT1, was applied to augment the level of AEG-1 palmitoylation, which retards the tumor growth of HCC in xenograft model. Conclusion: Our study suggests an unknown mechanism that AEG-1 palmitoylation dynamically manipulates HCC progression and pinpoints that raising AEG-1 palmitoylation might confer beneficial effect on the treatment of HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Lipoilación , Cisteína/metabolismo , Nucleasa Microcócica/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Línea Celular Tumoral , Endonucleasas/metabolismoRESUMEN
With the advent of increasingly loose nanofiltration membranes for dye desalination, synthesis methods based on interfacial polymerization and bio-inspired materials such as polydopamine (pDA) have been investigated. However, the long polymerization time of pDA greatly limits the synthesis and application of fast dye/salt separation membranes. In this work, prebiotic chemistry-inspired aminomalononitrile (AMN) was used as a binder to co-deposit the Mannich reaction of tetrakis(hydroxymethyl)phosphonium chloride (THPC) and polyethyleneimine (PEI) to form the positively charged selective layer rapidly. The optimum membrane had a water permeance of 30.7 LMH bar-1 and a rejection of positively charged Victoria blue B (VBB, 200 ppm) and Na2SO4 (1 g/L) of 99.5 % and 9.9 %, respectively. Moreover, the results of a practical application test showed that it had excellent separation performance towards various positively charged dyes and salts. In addition, the actual application test results show that the membrane has good long-term stability during application. In terms of antifouling and antibacterial, the membrane has excellent antibacterial and antifouling properties., Further antibacterial tests were carried out, and the inactivation effect of the membrane on E. coli was also confirmed. The preparation method proposed in this work provides technical support for developing new dye/salt separation membranes.
Asunto(s)
Colorantes , Membranas Artificiales , Antibacterianos , Cloruros , Colorantes/química , Escherichia coli , Polietileneimina , Sales (Química) , Cloruro de Sodio , AguaRESUMEN
Heavy metal ions in drinking water severely threaten public health in various places worldwide. Nanofiltration (NF) membrane technology is an attractive option for heavy metal ions removal; however, improving NF membrane filtration performance is required to make their industrial application viable. In this study, a positively charged THPC/PEI-TMC NF membrane was designed via simple one-step incorporation of Tetrakis (hydroxymethyl) phosphonium chloride (THPC) biocide on the surface of PEI-TMC membranes, significantly optimizing surface morphology, roughness, hydrophilicity, and zeta potential of PEI-TMC membranes. It was found that the pure water permeability (11.6 Lm-2h-1bar-1) of the THPC modified membrane was three times larger than that of the original PEI-TMC membrane (3.4 Lm-2h-1bar-1) while maintaining a high level of ion rejections (around 95% for Zn2+, Cd2+, Ni2+, Cu2+ and about 90% for Pb2+). Additionally, the incorporation of the THPC on the original PEI-TMC membrane surface also conferred good antibacterial properties, which protect the organic membrane from bacterial growth and prolong the lifespan of the membrane.
Asunto(s)
Líquidos Iónicos , Metales Pesados , Antibacterianos/farmacología , Iones , Membranas Artificiales , PermeabilidadRESUMEN
The rational design of a ceramic-based nanofiltration membrane remains a significant challenge due to its performance and fabrication cost. Herein, we report a high-performance ceramic-based thin-film composite (TFC) membrane fabricated via a typical interfacial polymerization on an interwoven net substrate assembled by titanium dioxide (TiO2) nanowires. The chemical properties and morphologies were systematically investigated for ceramic substrates and their corresponding TFC membranes. Due to the significantly improved hydrophilicity of the TiO2 framework, more reactive amine monomers were uniformly adsorbed on the modified surface of the ceramic substrate, yielding an ultrathin polyamide layer with less resistance. In addition, the smooth surface and decreased pore size of the TiO2 framework contributed to forming a defect-free polyamide layer. As a result, the obtained ceramic-based TFC membrane evinced high permeance of 26.4 L m-2 h-1 bar-1 and excellent salt rejection efficiency, leading to simultaneous improvements compared with the control TFC membrane without the TiO2 framework. Notably, the potential regeneration ability of the ceramic-based TFC membrane could be achieved via facile low-temperature calcination and re-polymerization process due to the varied thermostability between the polyamide layer and the robust ceramic substrate. The operation of regeneration helped to prolong the lifetime and decrease the cost for the ceramic-based TFC membrane. This research provides a feasible protocol to fabricate sustainable ceramic-based nanofiltration membranes with enhanced performance for water treatment.
Asunto(s)
Membranas Artificiales , Purificación del Agua , Cerámica , Nylons/química , PolimerizacionRESUMEN
In spite of extensive research, fouling is still the main challenge for nanofiltration membranes, generating an extra transport resistance and requiring a larger operational pressure in practical applications. We fabricated a highly antifouling nanofiltration membrane by grafting poly(N-isopropylacrylamide) (PNIPAM) chains on a bromine-containing polyamide layer. The resulting membrane was found to have a double permeance compared to the pristine membrane, while the rejection of multivalent ions remained the same. In addition, PNIPAM chains yielded a better deposition resistance and adhesion resistance, thereby mitigating the increase of fouling and promoting the recovery of flux during the filtration and traditional cleaning stages, respectively. Moreover, PNIPAM chains shrank when the water temperature was above the lower critical solution temperature (LCST), indicating the formation of a buffer layer between the membrane and pollutants. The buffer layer would eliminate the membrane-foulant interaction energy, thus further enhancing the detachment of pollutants. This simple and efficient cleaning method could act as an enhanced cleaning procedure to remove irreversible fouling. This provides new insights into the fabrication of enhanced antifouling membranes using smart responsive polymer chains.
RESUMEN
With the continuous pressure of water contamination caused by textile industry, loose nanofiltration (LNF) membranes prepared by green materials with an extraordinary water permeability are highly desirable for the recovery and purification of dyes and salts. In this work, low-pressure LNF membranes with ultrahigh permeability were fabricated via one-step interfacial polymerization (IP), in which inexpensive natural carbohydrate-derived sugars with large size and low reactivity were utilized as aqueous monomers to design selective layer. A systematic characterization by chemical analysis and optical microscopy demonstrated that the formed polyester film features not only loosen the structure, but also results in a hydrophilic and negatively charged surface. The optimized sucrose-based membrane (Su0.6/TMC0.1) with an excellent water permeability of 52.4 LMH bar-1 was found to have a high rejection of dyes and a high transmission of salts. In addition, the sugar-based membrane manifested an excellent anti-fouling performance and long-term stability. Furthermore, the non-optimized Gl0.6/TMC0.1 and Ra0.6/TMC0.1 membranes also shown a high water permeability, while maintaining a competitive dye/salt separation performance, which confirmed the universal applicability of the membrane design principle. Therefore, the proposed new strategy for preparing next-generation LNF membranes can contribute towards the textile wastewater treatment.
Asunto(s)
Colorantes , Purificación del Agua , Carbohidratos , Membranas Artificiales , PoliésteresRESUMEN
Photocatalysis is an efficient and green technology in the environmental protection. Due to the high charge separation and transfer, donor-acceptor (D-A) conjugated polymers attract much attention for their photocatalytic degradations towards organic pollutants. Herein, the authors reported three novel D-A conjugated polymers, named as HPBP, HPTP, and HPF, with heptazine moieties as electron acceptors, while biphenyl, terphenyl, or fluorene moieties as electron donors, respectively, which indeed exhibit a highly efficient photocatalytic degradation towards tetracyclines upon the visible-light irradiation. Among them, the photocatalytic performance of HPF is especially noticeable with the degradation rate up to 87% within 30 min, almost 11 times in comparison to those of pristine g-C3 N4 , which is mainly attributed to its high crystallinity and conjugation. For their photocatalytic mechanism, the â¢O2 - radical anions are regarded as the active species.
Asunto(s)
Polímeros , Tetraciclinas , Compuestos Heterocíclicos con 3 Anillos , TriazinasRESUMEN
Radiation-induced lung injury (RILI) is a potentially fatal and dose-limiting complication of thoracic cancer radiotherapy. However, effective therapeutic agents for this condition are limited. Here, we describe a novel strategy to exert additive effects of a non-erythropoietic EPO derivative (ARA290), along with a free radical scavenger, superoxide dismutase (SOD), using a bioengineered nanoreactor (SOD@ARA290-HBc). ARA290-chimeric nanoreactor makes SOD present in a confined reaction space by encapsulation into its interior to heighten stability against denaturing stimuli. In a RILI mouse model, intratracheal administration of SOD@ARA290-HBc was shown to significantly ameliorate acute radiation pneumonitis and pulmonary fibrosis. Our investigations revealed that SOD@ARA290-HBc performs its radioprotective effects by protecting against radiation induced alveolar epithelial cell apoptosis and ferroptosis, suppressing oxidative stress, inhibiting inflammation and by modulating the infiltrated macrophage phenotype, or through a combination of these mechanisms. In conclusion, SOD@ARA29-HBc is a potential therapeutic agent for RILI, and given its multifaceted roles, it may be further developed as a translational nanomedicine for other related disorders.
Asunto(s)
Lesión Pulmonar , Fibrosis Pulmonar , Traumatismos por Radiación , Animales , Pulmón , Ratones , NanotecnologíaRESUMEN
BACKGROUND: The Interaction between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with Angiotensin converting enzyme 2 (ACE2) on the host cells is a crucial step for the viral entry and infection. Therefore, investigating the molecular mechanism underlying the interaction is of great importance for the prevention of the infection of SARS-CoV-2. In this study, we aimed to establish a virus-free in vitro system to study the interaction between the spike protein and host cells of SARS-CoV-2. RESULTS: Our results show that ACE2-overexpressing HEK293T cells are captured by immobilized spike S1 protein, and the cell capturing process can be inhibited by the receptor binding domain of the spike protein or antibodies against S protein. Furthermore, spike S1 protein variant with D614G mutant show a higher cell capturing ability than wild type spike S1 protein and stronger binding capacity of its receptor ACE2. In addition, the captured cells can be eluted as living cells for further investigation. CONCLUSIONS: This study provides a new in vitro system for investigating the interaction between SARS-CoV-2 and host cells and purifying ACE2-expressing cells.
RESUMEN
Metastasis is the leading cause of death in cancer patients. Eliciting anti-tumor immune responses against lung metastasis is hindered by the immunosuppressive microenvironment. This study explored a biomimetic nanoformulation, comprising a nanovaccine (OP) that delivers tumor antigens and adjuvants spatially and temporally in a virus-like manner, and a pulmonary surfactant-biomimetic liposome with an immunomodulator, JQ1 (PS-JQ1). The findings of this study showed that intratracheal administration of OP+PS-JQ1 activated lung immune cells without concomitant excess inflammation, enhanced tumor antigen cross-presentation, generated a significantly high antigen-specific CD8+ T cell response, and reshaped the immunocellular composition in B16 melanoma tumor-bearing lung. OP+PS-JQ1 nanoformulation exhibited a striking immunotherapeutic efficacy, induced local and systemic tumor suppression, improved survival of mice, initiated immune memory that prevents recurrence of secondary tumors. This stable and nontoxic nanoformulation provides a simple, flexible, and robust strategy for augmenting anti-tumor immunity for metastatic cancer. STATEMENT OF SIGNIFICANCE: Egg glue proteins are produced by female insects, which can make the eggs firmly attached to the oviposition sites, not affected by wind and rain. However, genes encoding insect egg glue proteins have not yet been reported, and the molecular mechanism underpinning their adhesion is still unknown. Our study makes a significant contribution to the literature as it identifies the sequence, structure, adhesive property, and mechanism of silkworm egg glue protein. Furthermore, it outlines key insights into the structure-function relationships associated with egg glue proteins. We believe that this paper will be of interest to the readership of your journal as it identifies the first complete sequence of insect egg glue proteins, thereby highlighting their potentials future applications in both the biomedical and technical fields.
Asunto(s)
Biomimética , Recurrencia Local de Neoplasia , Adyuvantes Inmunológicos/farmacología , Animales , Antígenos de Neoplasias , Linfocitos T CD8-positivos , Femenino , Humanos , Inmunoterapia , Ratones , Ratones Endogámicos C57BL , Microambiente TumoralRESUMEN
Smoke-free home rules restrict smoking in the home, but biomarkers of secondhand smoke exposure are needed to help understand the association between smoke-free homes and child secondhand smoke exposure. Participants (n = 346) were majority Black/African American mother-child dyads from a longitudinal study in North Carolina. Mothers completed questionnaires on household smoking behaviors and rules, and child saliva samples were assayed for secondhand smoke exposure. Regression models used smoke-free home rules to predict child risk for secondhand smoke exposure. Children in households with smoke-free home rules had less salivary cotinine and risk for secondhand smoke exposure. After controlling for smokers in the household, home smoking rules were not a significant predictor of secondhand smoke exposure. Compared to children in households with no smokers, children in households with at least one smoker but a non-smoking mother (OR 5.35, 95% CI: 2.22, 13.17) and households with at least one smoker including a smoking mother (OR 13.73, 95% CI: 6.06, 33.28) had greater risk for secondhand smoke exposure. Results suggest smoke-free home rules are not sufficient to fully protect children from secondhand smoke exposure, especially in homes with smokers. Future research should focus on how household members who smoke can facilitate the prevention of child secondhand smoke exposure.