Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
World J Gastrointest Oncol ; 16(5): 2253-2260, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38764812

RESUMEN

BACKGROUND: Undifferentiated pleomorphic sarcoma (UPS) is a rare malignant mesenchymal tumor with a poor prognosis. It mainly occurs in the extremities, trunk, head and neck, and retroperitoneum regions. Owing to the lack of specific clinical manifestations and imaging features, UPS diagnosis mainly depends on pathological and immunohistochemical examinations for exclusive diagnosis. Here we report an extremely rare case of high-grade UPS in the common bile duct (CBD). There are limited available data on such cases. CASE SUMMARY: A 70-year-old woman was admitted to our department with yellow eyes and urine accompanied by upper abdominal distending pain for 2 wk. Her laboratory data suggested significantly elevated hepatorenal function levels. The imaging data revealed calculous cholecystitis, intrahepatic and extrahepatic bile duct dilation with extrahepatic bile duct calculi, and a space-occupying lesion at the distal CBD. After endoscopic biliary stenting and symptomatic support therapy, CBD exploration and biopsy were performed. The frozen section indicated malignant spindle cell tumor of the CBD mass, and further radical pancreaticoduodenectomy was performed. Finally, the neoplasm was diagnosed as a high-grade UPS combined with the light-microscopic morphology and immunohistochemical results. CONCLUSION: This extremely rare case highlighted the need for increasing physicians' vigilance, reducing the odds of misdiagnosis, and providing appropriate treatment strategies.

2.
Adv Mater ; : e2403489, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556648

RESUMEN

Rechargeable aqueous proton batteries with small organic molecule anodes are currently considered promising candidates for large-scale energy storage due to their low cost, stable safety, and environmental friendliness. However, the practical application is limited by the poor cycling stability caused by the shuttling of soluble organic molecules between electrodes. Herein, a cell separator is modified by a GO-casein-Cu2+ layer with a brick-and-mortar structure to inhibit the shuttling of small organic molecules. Experimental and calculation results indicate that, attributed to the synergistic effect of physical blocking of casein molecular chains and electrostatic and coordination interactions of Cu2+, bulk dissolution and shuttling of multiple small molecules can be inhibited simultaneously, while H+ transfer across the separators is not almost affected. With the protection of the GO-casein-Cu2+ separator, soluble small molecules, such as diquinoxalino[2,3-a:2',3'-c]phenazine,2,3,8,9,14,15-hexacyano (6CN-DQPZ) exhibit a high reversible capacity of 262.6 mA h g-1 and amazing stability (capacity retention of 92.9% after 1000 cycles at 1 A g-1). In addition, this strategy is also proved available to other active conjugated small molecules, such as indanthrone (IDT), providing a general green sustainable strategy for advancing the use of small organic molecule electrodes in proton cells.

3.
Plants (Basel) ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611501

RESUMEN

In this study, an innovative approach based on multimodal data and the transformer model was proposed to address challenges in agricultural disease detection and question-answering systems. This method effectively integrates image, text, and sensor data, utilizing deep learning technologies to profoundly analyze and process complex agriculture-related issues. The study achieved technical breakthroughs and provides new perspectives and tools for the development of intelligent agriculture. In the task of agricultural disease detection, the proposed method demonstrated outstanding performance, achieving a precision, recall, and accuracy of 0.95, 0.92, and 0.94, respectively, significantly outperforming the other conventional deep learning models. These results indicate the method's effectiveness in identifying and accurately classifying various agricultural diseases, particularly excelling in handling subtle features and complex data. In the task of generating descriptive text from agricultural images, the method also exhibited impressive performance, with a precision, recall, and accuracy of 0.92, 0.88, and 0.91, respectively. This demonstrates that the method can not only deeply understand the content of agricultural images but also generate accurate and rich descriptive texts. The object detection experiment further validated the effectiveness of our approach, where the method achieved a precision, recall, and accuracy of 0.96, 0.91, and 0.94. This achievement highlights the method's capability for accurately locating and identifying agricultural targets, especially in complex environments. Overall, the approach in this study not only demonstrated exceptional performance in multiple tasks such as agricultural disease detection, image captioning, and object detection but also showcased the immense potential of multimodal data and deep learning technologies in the application of intelligent agriculture.

4.
Natl Sci Rev ; 11(4): nwae045, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545446

RESUMEN

Organic materials with rich active sites are good candidates of high-capacity anodes in aqueous batteries, but commonly low utilization of active sites limits their capacity. Herein, two isomers, symmetric and asymmetric hexaazatribenzanthraquinone (s-HATBAQ and a-HATBAQ), with rich active sites have been synthesized in a controllable manner. It has been revealed for the first time that a sulfuric acid catalyst can facilitate the stereoselective formation of s-HATBAQ. Attributed to the reduced steric hindrance in favor of proton insertion as well as the amorphous structure conducive to electrochemical dynamics, s-HATBAQ exhibits 1.5 times larger specific capacity than a-HATBAQ. Consequently, the electrode of s-HATBAQ with 50% reduced graphene oxide (s-HATBAQ-50%rGO) delivers a record high specific capacity of 405 mAh g-1 in H2SO4 electrolyte. Moreover, the assembled MnO2//s-HATBAQ-50%rGO aqueous proton full batteries show an exceptional cycling stability at 25°C and can maintain ∼92% capacity after 1000 cycles at 0.5 A g-1 at -80°C. This work demonstrates the controllable synthesis of isomers, showcases a wide-temperature-range prototype proton battery and highlights the significance of precise molecular structure modulation in organic energy storage.

5.
Antioxidants (Basel) ; 13(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38539841

RESUMEN

Premature ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction characterized by the abnormal alteration of hormone levels such as FSH and E2. POI causes infertility, severe daily life disturbances, and long-term health risks. However, the underlying mechanism remains largely unknown. In this study, we found that POI is associated with the cellular senescence of ovarian granulosa cells, and TRIM28 mediates oxidative stress (OS)-induced cellular senescence in granulosa cells. Mechanistically, OS causes a decrease in TRIM28 protein levels in KGN cells. Subsequently, it triggers an increase in the levels of autophagy marker proteins ATG5 and LC3B-II, and the downregulation of P62. Abnormal autophagy induces an increase in the levels of cellular senescence markers γ-H2A.X, P16, and P21, provoking cellular senescence in vitro. The overexpression of ovarian TRIM28 through a microinjection of lentivirus attenuated autophagy, cellular senescence, and follicular atresia in the ovaries of POI mice and improved mouse fertility in vivo. Our study highlights the triggers for POI, where the reduction of TRIM28, which is regulated by reactive oxygen species, causes follicular atresia and POI via triggering autophagy and inducing granulosa cell senescence. Shedding light on TRIM28 may represent a potential intervention strategy for POI.

6.
Ecotoxicol Environ Saf ; 273: 116121, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402792

RESUMEN

In recent years, nanoplastics (NPs) and triclosan (TCS, a pharmaceutical and personal care product) have emerged as environmental pollution issues, and their combined presence has raised widespread concern regarding potential risks to organisms. However, the combined toxicity and mechanisms of NPs and TCS remain unclear. In this study, we investigated the toxic effects of polystyrene NPs and TCS and their mechanisms on KGN cells, a human ovarian granulosa cell line. We exposed KGN cells to NPs (150 µg/mL) and TCS (15 µM) alone or together for 24 hours. Co-exposure significantly reduced cell viability. Compared with exposure to NPs or TCS alone, co-exposure increased reactive oxygen species (ROS) production. Interestingly, co-exposure to NPs and TCS produced synergistic effects. We examined the activity of superoxide dismutase (SOD) and catalase (CAT), two antioxidant enzymes; it was significantly decreased after co-exposure. We also noted an increase in the lipid oxidation product malondialdehyde (MDA) after co-exposure. Furthermore, co-exposure to NPs and TCS had a more detrimental effect on mitochondrial function than the individual treatments. Co-exposure activated the NRF2-KEAP1-HO-1 antioxidant stress pathway. Surprisingly, the expression of SESTRIN2, an antioxidant protein, was inhibited by co-exposure treatments. Co-exposure to NPs and TCS significantly increased the autophagy-related proteins LC3B-II and LC3B-Ⅰ and decreased P62. Moreover, co-exposure enhanced CASPASE-3 expression and inhibited the BCL-2/BAX ratio. In summary, our study revealed the synergistic toxic effects of NPs and TCS in vitro exposure. Our findings provide insight into the toxic mechanisms associated with co-exposure to NPs and TCS to KGN cells by inducing oxidative stress, activations of the NRF2-KEAP1-HO-1 pathway, autophagy, and apoptosis.


Asunto(s)
Triclosán , Femenino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Triclosán/toxicidad , Triclosán/metabolismo , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Microplásticos/metabolismo , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Células de la Granulosa/metabolismo
7.
J Ovarian Res ; 17(1): 35, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38317224

RESUMEN

PURPOSE: PAQR7 plays a key role in cell apoptosis as a progesterone membrane receptor. The physiological mechanism of PAQR7 in ovarian function and its anti-apoptotic action in mammals remain poorly understood. METHODS: We first added 0.2 µM aminoglutethimide (AG), an inhibitor of endogenous progesterone (P4) secretion, and transfected siPAQR7 co-incubated with P4 in human KGN cells to identify granulosa cell apoptosis, respectively. Additionally, we used Paqr7 knockout (PAQR7 KO) mice to assess the role of PAQR7 in the ovary. RESULTS: The PAQR7 deficiency significantly increased apoptosis of KGN cells, and this significant difference disappeared following P4 supplementation. The Paqr7-/- female mice showed a prolonged estrous cycle, reduced follicular growth, increased the number of atresia follicles, and decreased the concentrations of E2 and AMH. The litters, litter sizes, and spontaneous ovulation in the Paqr7-/- mice were significantly decreased compared with the Paqr7+/+ mice. In addition, we also found low expression of PAQR7 in GCs from human follicular fluids of patients diagnosed with decreased ovarian reserve (DOR) and ovaries of mice with a DOR-like phenotype, respectively. CONCLUSIONS: The present study has identified that PAQR7 is involved in mouse ovarian function and fertilization potential. One possible mechanism is mediating the anti-apoptotic effect of P4 on GC apoptosis via the BCL-2/BAX/CASPASE-3 signaling pathway. The mechanism underlying the effect of PAQR7 on ovarian development and aging remains to be identified.


Asunto(s)
Progesterona , Receptores Acoplados a Proteínas G , Receptores de Progesterona , Animales , Femenino , Humanos , Ratones , Apoptosis , Células de la Granulosa/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(8): e2316716121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349874

RESUMEN

Understanding the molecular-level mechanisms involved in transmembrane ion selectivity is essential for optimizing membrane separation performance. In this study, we reveal our observations regarding the transmembrane behavior of Li+ and Mg2+ ions as a response to the changing pore solvation abilities of the covalent-organic-framework (COF) membranes. These abilities were manipulated by adjusting the lengths of the oligoether segments attached to the pore channels. Through comparative experiments, we were able to unravel the relationships between pore solvation ability and various ion transport properties, such as partitioning, conduction, and selectivity. We also emphasize the significance of the competition between Li+ and Mg2+ with the solvating segments in modulating selectivity. We found that increasing the length of the oligoether chain facilitated ion transport; however, it was the COF membrane with oligoether chains containing two ethylene oxide units that exhibited the most pronounced discrepancy in transmembrane energy barrier between Li+ and Mg2+, resulting in the highest separation factor among all the evaluated membranes. Remarkably, under electro-driven binary-salt conditions, this specific COF membrane achieved an exceptional Li+/Mg2+ selectivity of up to 1352, making it one of the most effective membranes available for Li+/Mg2+ separation. The insights gained from this study significantly contribute to advancing our understanding of selective ion transport within confined nanospaces and provide valuable design principles for developing highly selective COF membranes.

9.
BMC Vet Res ; 20(1): 53, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341563

RESUMEN

BACKGROUND: Enterocytozoon bieneusi is a zoonotic pathogen widely distributed in animals and humans. It can cause diarrhea and even death in immunocompromised hosts. Approximately 800 internal transcribed spacer (ITS) genotypes have been identified in E. bieneusi. Farmed foxes and raccoon dogs are closely associated to humans and might be the reservoir of E. bieneusi which is known to have zoonotic potential. However, there are only a few studies about E. bieneusi genotype identification and epidemiological survey in foxes and raccoon dogs in Henan and Hebei province. Thus, the present study investigated the infection rates and genotypes of E. bieneusi in farmed foxes and raccoon dogs in the Henan and Hebei provinces. RESULT: A total of 704 and 884 fecal specimens were collected from foxes and raccoon dogs, respectively. Nested PCR was conducted based on ITS of ribosomal RNA (rRNA), and then multilocus sequence typing (MLST) was conducted to analyze the genotypes. The result showed that infection rates of E. bieneusi in foxes and raccoon dogs were 18.32% and 5.54%, respectively. Ten E. bieneusi genotypes with zoonotic potential (NCF2, NCF3, D, EbpC, CHN-DC1, SCF2, CHN-F1, Type IV, BEB4, and BEB6) were identified in foxes and raccoon dogs. Totally 178 ITS-positive DNA specimens were identified from foxes and raccoon dogs and these specimens were then subjected to MLST analysis. In the MLST analysis, 12, 2, 7 and 8 genotypes were identified in at the mini-/ micro-satellite loci MS1, MS3, MS4 and MS7, respectively. A total of 14 multilocus genotypes were generated using ClustalX 2.1 software. Overall, the present study evaluated the infection of E. bieneusi in foxes and raccoon dogs in the Henan and Hebei province, and investigated the zoonotic potential of the E. bieneusi in foxes and raccoon dogs. CONCLUSIONS: These findings expand the geographic distribution information of E. bieneusi' host in China and was helpful in preventing against the infection of E. bieneusi with zoonotic potential in foxes and raccoon dogs.


Asunto(s)
Enterocytozoon , Microsporidiosis , Humanos , Animales , Tipificación de Secuencias Multilocus/veterinaria , Enterocytozoon/genética , Zorros/genética , Perros Mapache , Epidemiología Molecular , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Heces , Prevalencia , Filogenia , China/epidemiología , Genotipo
10.
Hereditas ; 161(1): 4, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38233949

RESUMEN

BACKGROUND: Fibrinogen plays pivotal roles in multiple biological processes. Genetic mutation of the fibrinogen coding genes can result in congenital fibrinogen disorders (CFDs). We identified a novel heterozygous missense mutation, FGG c.1168G > T (NCBI NM_000509.6), and conducted expression studies and functional analyses to explore the influence on fibrinogen synthesis, secretion, and polymerization. METHODS: Coagulation tests were performed on the patients to detect the fibrinogen concentration. Whole-exome sequencing (WES) and Sanger sequencing were employed to detect the novel mutation. Recombinant fibrinogen-producing Chinese hamster ovary (CHO) cell lines were built to examine the recombinant fibrinogen synthesis and secretion by western blotting and enzyme-linked immunosorbent assay (ELISA). The functional analysis of fibrinogen was performed by thrombin-catalyzed fibrin polymerization assay. In silico molecular analyses were carried out to elucidate the potential molecular mechanisms. RESULTS: The clinical manifestations, medical history, and laboratory tests indicated the diagnosis of hypodysfibrinogenemia with bleeding phenotype in two patients. The WES and Sanger sequencing revealed that they shared the same heterozygous missense mutation, FGG c.1168G > T. In the expression studies and functional analysis, the missense mutation impaired the recombinant fibrinogen's synthesis, secretion, and polymerization. Furthermore, the in silico analyses indicated novel mutation led to the hydrogen bond substitution. CONCLUSION: The study highlighted that the novel heterozygous missense mutation, FGG c.1168G > T, would change the protein secondary structure, impair the "A: a" interaction, and consequently deteriorate the fibrinogen synthesis, secretion, and polymerization.


Asunto(s)
Afibrinogenemia , Fibrinógeno , Mutación Missense , Animales , Cricetinae , Humanos , Células CHO , Cricetulus , Fibrinógeno/genética , Mutación , Fenotipo
11.
Sci Rep ; 14(1): 774, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191906

RESUMEN

We previously reported that circIGF1R is significantly downregulated in non-small cell lung cancer (NSCLC) cells and tissues. It inhibits cancer cell invasion and migration, although the underlying molecular mechanisms remain elusive. The invasion and migration of NSCLC cells was analyzed by routine in vivo and in vitro functional assays. Fluorescent in situ hybridization, luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation (RIP) assay were performed to explore the molecular mechanisms. Mechanism of action of paclitaxel-induced RBFOX3-mediated inhibition of NSCLC invasion and migration was investigated through in vitro and in vivo experiments.Our study reveals that circIGF1R acts as a Competing Endogenous RNA (ceRNA) for miR-1270, thereby regulating Van-Gogh-like 2 (VANGL2) expression and subsequently inhibiting NSCLC cell invasion and migration via the Wnt pathway. We also found that RNA binding protein fox-1 homolog 3 (RBFOX3) enhances circIGF1R biogenesis by binding to IGF1R pre-mRNA, which in turn suppresses migration and invasion in NSCLC cells. Additionally, the chemotherapeutic drug paclitaxel was shown to impede NSCLC invasion and migration by inducing RBFOX3-mediated circIGF1R biogenesis.RBFOX3 inhibits the invasion and migration of NSCLC cells through the circIGF1R/ miR-1270/VANGL2 axis, circIGF1R has the potential to serve as a biomarker and therapeutic target for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , MicroARNs/genética , Paclitaxel/farmacología , Animales , Línea Celular Tumoral , Invasividad Neoplásica
12.
Biol Reprod ; 110(4): 711-721, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38267364

RESUMEN

Completion of fertilization is orchestrated by various ion channels in sperm membrane. Hyperpolarization of membrane potential, an indispensable event during the capacitation process, is dominated by sperm potassium channel (KSper). In addition to sperm-specific SLO3, which forms the channel pore, the auxiliary subunit leucine-rich-repeat-containing protein 52 (LRRC52) is required to form mKSper to function under physiological conditions. However, in human sperm, although most evidence supports that hSLO3 is the pore-forming subunit, whether hLRRC52 contributes to hKSper conductance and modulates sperm function remains to be understood. Here, using an extracellular segment that is homologous between mice and humans as an antigen, we developed a polyclonal antibody designed as LID1 that specifically detected mLRRC52 and performed co-immunoprecipitation with mSLO3. Additionally, patch-clamp recordings of mouse sperm showed that, physiological activation of mKSper and sperm functions were dramatically attenuated after treatment with LID1, indicating that LID1 functionally disrupted the regulation of mLRRC52 on mKSper. Next, LID1 was used to investigate the significance of hLRRC52 for hKSper activation. As a result, hLRRC52 was expressed in human sperm and might be assembled with hSLO3. More importantly, LID1 inhibited hKSper currents and depolarized sperm membrane potential, supporting essential modulation of hLRRC52 in hKSper. Ca2+ signaling of human sperm was also compromised in the presence of LID1, which impaired sperm motility and acrosome reaction. Because LID1 specifically inhibited both mKSper and hKSper but not mCatSper or hCatSper, our results suggest that hLRRC52 functions as an important component of hKSper and regulates sperm physiological functions.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio , Motilidad Espermática , Humanos , Masculino , Animales , Ratones , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
13.
Small ; : e2310791, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214692

RESUMEN

The evolution of porous membranes has revitalized their potential application in sustainable osmotic-energy conversion. However, the performance of multiporous membranes deviates significantly from the linear extrapolation of single-pore membranes, primarily due to the occurrence of ion-concentration polarization (ICP). This study proposes a robust strategy to overcome this challenge by incorporating photoelectric responsiveness into permselective membranes. By introducing light-induced electric fields within the membrane, the transport of ions is accelerated, leading to a reduction in the diffusion boundary layer and effectively mitigating the detrimental effects of ICP. The developed photoelectric-responsive covalent-organic-framework membranes exhibit an impressive output power density of 69.6 W m-2 under illumination, surpassing the commercial viability threshold by ≈14-fold. This research uncovers a previously unexplored benefit of integrating optical electric conversion with reverse electrodialysis, thereby enhancing energy conversion efficiency.

14.
J Hazard Mater ; 465: 133111, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38043426

RESUMEN

Soil cadmium (Cd) contamination has been increasingly serious in agricultural land across China, posing unexpected risks to human health concerning crop safety and terrestrial ecosystems. This study collected Cd concentration data from 3388 soil sites in agricultural regions. To assess the Cd risk to crop safety, a comprehensive sampling investigation was performed to develop reliable Soil Plant Transfer (SPT) model. Eco-toxicity tests with representative soils and organism was conducted to construct the Species Sensitivity Distribution (SSD) for ecological risk assessment. Then, a tiered framework was applied based on Accumulation index, deterministic method (Hazard quotient), and probabilistic assessment (Monte Carlo and Joint Probability Curve). The results revealed the widespread Cd enrichment in agricultural soils, mainly concentrated in Central, Southern, and Southwest China. Risk assessments demonstrated the greater risks related to crop safety, while the ecological risks posed by soil Cd were manageable. Notably, agricultural soils in southern regions of China exhibited more severe risks to both crop safety and soil ecosystem, compared to other agricultural regions. Furthermore, tiered methodology proposed here, can be adapted to other trace elements with potential risks to crop safety and terrestrial ecosystem.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Cadmio/análisis , Suelo , Ecosistema , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , China , Medición de Riesgo , Metales Pesados/análisis
15.
Adv Biol (Weinh) ; 8(2): e2300378, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37937390

RESUMEN

This study aims to develop and evaluate a model to predict the immune reconstitution among HIV/AIDS patients after antiretroviral therapy (ART). A total of 502 HIV/AIDS patients are randomized to the training cohort and evaluation cohort. Least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression analysis are performed to identify the indicators and establish the nomogram for predicting the immune reconstitution. Decision curve analysis (DCA) and clinical impact curve (CIC) are used to evaluate the clinical effectiveness of the nomogram. Predictive factors included white blood cells (WBC), baseline CD4+ T-cell counts (baseline CD4), ratio of effector regulatory T cells to resting regulatory T cells (eTreg/rTreg) and low-density lipoprotein cholesterol (LDL-C) and are incorporated into the nomogram. The area under the curve (AUC) is 0.812 (95% CI, 0.767∼0.851) and 0.794 (95%CI, 0.719∼0.857) in the training cohort and evaluation cohort, respectively. The calibration curve shows a high consistency between the predicted and actual observations. Moreover, DCA and CIC indicate that the nomogram has a superior net benefit in predicting poor immune reconstitution. A simple-to-use nomogram containing four routinely collected variables is developed and internally evaluated and can be used to predict the poor immune reconstitution in HIV/AIDS patients after ART.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Reconstitución Inmune , Humanos , Nomogramas , China/epidemiología , Área Bajo la Curva
16.
Nat Commun ; 14(1): 6702, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872199

RESUMEN

Access to sustainable energy is paramount in today's world, with a significant emphasis on solar and water-based energy sources. Herein, we develop photo-responsive ionic dye-sensitized covalent organic framework membranes. These innovative membranes are designed to significantly enhance selective ion transport by exploiting the intricate interplay between photons, electrons, and ions. The nanofluidic devices engineered in our study showcase exceptional cation conductivity. Additionally, they can adeptly convert light into electrical signals due to photoexcitation-triggered ion movement. Combining the effects of salinity gradients with photo-induced ion movement, the efficiency of these devices is notably amplified. Specifically, under a salinity differential of 0.5/0.01 M NaCl and light exposure, the device reaches a peak power density of 129 W m-2, outperforming the current market standard by approximately 26-fold. Beyond introducing the idea of photoelectric activity in ionic membranes, our research highlights a potential pathway to cater to the escalating global energy needs.

17.
Sci Rep ; 13(1): 18034, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865676

RESUMEN

Both endotherms and ectotherms may raise their body temperature to limit pathogen infection. Endotherms do this by increasing their basal metabolism; this is called 'fever'. Ectotherms do this by migrating to warmer places; this is called 'behavioral fever'. White spot syndrome virus (WSSV) is the most lethal pathogen of cultured shrimp. This study examined the existence of behavioral fever in WSSV-infected Penaeus vannamei shrimp. Shrimp weighing 15 ± 0.5 g were inoculated intramuscularly with WSSV and kept in a four-compartment system (4-CS) with all the chambers at 27 °C or with a thermal gradient (27-29-31-33 °C). During the first 4 days post-inoculation, 94% of the WSSV-inoculated shrimp died in the 4-CS with a fixed temperature (27 °C), while only 28% died in the 4-CS with a temperature gradient. The inoculated animals clearly demonstrated a movement towards the warmer compartments, whereas this was not the case with the mock- and non-inoculated animals. With primary lymphoid organ cell cultures, it was demonstrated that the increase of temperature from 27-29 °C to 31-33 °C inhibits virus replication. It is concluded that behavioral fever is used by shrimp to elevate their temperature when infected with WSSV. Behavioral fever prevents WSSV infection and mortality.


Asunto(s)
Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Temperatura , Replicación Viral
18.
Infect Drug Resist ; 16: 5007-5019, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37551279

RESUMEN

Purpose: Neuropsychiatric adverse events (NPAEs) occur frequently in people living with human immunodeficiency virus (PLWH) receiving antiretroviral therapy (ART). This study aimed to assess the dynamic trends and risk factors of NPAEs among PLWH in Hangzhou taking efavirenz (EFV)- or dolutegravir (DTG)- or elvitegravir (EVG)-based regimens. Patients and Methods: A total of 287 ART-naive PLWH were included in this study, EFV (400mg)- (n = 122), EFV (600mg)- (n = 37), DTG- (n = 73), EVG-based (n = 47) and other ART regimens (n = 8) as the initial ART regimen were administered for 12 months. All data were collected at five time points within a 12-month follow-up. The Pittsburgh Sleep Quality Index and Hospital Anxiety and Depression Scale were used to evaluate sleep disorders and anxiety and depression symptoms, respectively. The dynamic trends and potential risk factors of NPAEs were investigated using a generalized linear mixed model. Results: Mean age was 29.4 (SD: 7.5) years with 97.2% males. After 12 months of ART, the prevalence of sleep disorders and anxiety decreased significantly, although only a slight improvement was observed for depression. In addition, there was a significant positive correlation between sleep disorders, anxiety, and depression. The risk factors for NPAEs differed slightly depending on the choice of ART regimen, but the seven factors most commonly associated with NPAEs were age, sex, marital status, education level, smoking status, body mass index, and WHO clinical stage. Treatment-induced changes in CD4-positive T-cell count and virological suppression did not depend on the particular choice of ART regimen. Conclusion: The prevalence of sleep disorders and anxiety changed significantly over time on ART and the risks of these disorders were associated with seven common clinical and demographic factors.

19.
Sci Total Environ ; 903: 166218, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572924

RESUMEN

With the rapid increase in the amount and sources of big data, using big data and machine learning methods to identify site soil pollution has become a research hotspot. However, previous studies that used basic information of sites as pollution identification indexes mainly have problems of low accuracy and efficiency when conducting complex model predictions for multiple soil pollution types. In this study, we collected the environmental data of 199 sites in 6 typical industries involving heavy metal and organic pollution. After feature fusion and selection, 10 indexes based on pollution sources and pathways were used to establish the soil pollution identification index system. The Multi-gate Mixture-of-Experts network (MMoE) were constructed to carry out the multi-tasks of soil heavy metals, VOCs and SVOCs pollution identification simultaneously. The SHAP framework was used to reveal the importance of pollution identification indexes on the multiple outputs of MMoE and obtain their driving factors. The results showed that the accuracies of MMoE model were 0.600, 0.783 and 0.850 for soil heavy metals, VOCs and SVOCs pollution identifications, respectively, which were 0-20 % higher than their accuracies of BP neural networks of single tasks. The indexes of raw material containing organic compounds, enterprise scale, soil pollution traces and industry types have the different significant importance on site soil pollutions. This study proposed a more efficient and accurate method to identify site soil pollutions and their driving factors, which offers a step towards realizing intelligent identification and risk control of site soil pollution globally.

20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(4): 565-574, 2023 Apr 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37385619

RESUMEN

OBJECTIVES: Hereditary spherocytosis (HS) is the most common hereditary defect of the red cell membrane, mainly characterized by anemia, jaundice, and splenomegaly. Due to the atypical clinical manifestations and negative family history of some patients, as well as the low sensitivity and specificity of traditional laboratory examinations, it is easy for it to escape diagnosis or be misdiagnosed. At present, it has been confirmed that the mutation of ANK1, SPTB, SPTA1, SLC4A1 and EPB42 genes can cause the deletion of their corresponding coding proteins, and thus lead to the defect of erythrocyte membrane. This study aims to analyze the feasibility and clinical application value of HS gene diagnosis. METHODS: Data of 26 patients from Hunan, China with HS admitted to the Department of Hematology, Second Xiangya Hospital of Central South University from January 2018 to September 2021 were retrospectively collected, and their clinical manifestations and results of laboratory examinations were analyzed. Next-generation sequencing (NGS) combined with Sanger sequencing were applied. The mutation of HS pathogenic gene and the variation of uridine diphosphate-glucuronosyl transferase 1 family polypeptide A1 (UGT1A1), a key enzyme in the regulation of bilirubin metabolism, were detected. The results of pathogenic gene variations were interpreted pathogenic gene variations in accordance with the Standards and guidelines for the interpretation of sequence variants published by the American College of Medical Genetics and Genomics (ACMG). The clinical characteristics of patients with different gene variants were analyzed, and the clinical diagnosis and genetic diagnosis were compared. RESULTS: Among the 26 patients with HS, there were 23 cases of anemia, 25 cases of jaundice, 24 cases of splenomegaly, and 14 cases of cholelithiasis. There were 16 cases with family history and 10 cases without family history. The results of HS mutation test were positive in 25 cases and negative in 1 case. A total of 18 heterozygous mutations of HS pathogenic genes were detected in 19 families, among which 14 were pathogenic, 1 was likely pathogenic and 3 were of unknown significance. SPTB mutations (12) and ANK1 mutations (4) were the most common. The main variation types were nonsense mutation (9). There were no significant differences in peripheral blood cell parameters and hemolysis indicators between the SPTB mutant group and the ANK1 mutant group (all P>0.05). The rate of splenectomy in ANK1 mutation group was higher than that in SPTB mutation group, and the difference was statistically significant (χ2=6.970, P=0.014). There were no significant differences in peripheral blood cell parameters and hemolysis indicators among different mutation types (nonsense mutation, frameshift mutation, splice site mutation and missense mutation) (all P>0.05). Among the 18 clinically confirmedpatients, there were 17 cases whose diagnosis is consistent with the genetic diagnosis. Eight patients were clinically suspected, and all of them were confirmed by detection of HS gene mutation. Twenty-four patients with HS underwent UGT1A1 mutation detection, among which 5 patients carried UGT1A1 mutation resulting in a decrease in enzyme activity, and 19 patients had normal enzyme activity. The level of total bilirubin (TBIL) in the group with reduced enzyme activity was higher than that in the group with normal enzyme activity, and the difference was statistically significant (U=22, P=0.038). CONCLUSIONS: Most patients with HS have anemia, jaundice and splenomegaly, often accompanied by cholelithiasis. SPTB and ANK1 mutations are the most common mutations in HS pathogenic genes among patients in Hunan, China, and there was no significant correlation between genotype and clinical phenotype. Genetic diagnosis is highly consistent with clinical diagnosis. The decrease of UGT1A1 enzyme activity can lead to the aggravation of jaundice in HS patients. Clinical combined gene diagnosis is beneficial for the rapid and precision diagnosis of HS. The detection of UGT1A1 enzyme activity related gene variation plays an important role in evaluation of HS jaundice.


Asunto(s)
Codón sin Sentido , Hemólisis , Humanos , Estudios Retrospectivos , Esplenomegalia , Bilirrubina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA