RESUMEN
Construction of spin-crossover (SCO) materials is very appealing for applications such as molecular switches and information storage. This study focuses on the design of Fe(II) complexes using N,N'-bis(2-pyridinylmethyl)-1,2-ethanediamine-based ligands with an N4 structure for SCO material development. By incorporating para-substituted benzene groups into the ligand's pyridine moiety, two polymorphs, α and ß, were obtained, both exhibiting SCO activity. Notably, the ß polymorph displayed a spin crossover temperature of 270 K, which is approaching room temperature. Structural analyses were conducted to compare the differences between the polymorphs, along with a literature review of related complexes, providing insights into the characteristics of SCO behavior.
RESUMEN
We have utilized reversible covalent bonding to expand the accessible states of a molecular switch. Introducing a hydroxyl group onto the donor moiety of a donor-acceptor Stenhouse adduct (DASA) imparts an acidity response by forming an oxazolidine ring through intramolecular nucleophilic addition. Furthermore, we observed distinct color changes under cryogenic conditions, extending the thermal responsiveness beyond the cyclization equilibrium observed at elevated temperatures. These unique responses present promising prospects for diverse applications compared to traditional photoinduced binary isomerization.