RESUMEN
Untreated radioactive iodine (129I and 131I) released from nuclear power plants poses a significant threat to humans and the environment, so the development of materials to capture iodine from water media and steam is critical. Here, we report a charge transfer complex (TCNQ-MA CTC) with abundant nitrogen atoms and π-conjugated system for adsorption of I2 vapor and I3- from aqueous solutions. Due to the synergistic binding mechanism of benzene/triazine rings and N-containing groups with iodine, special I-π and charge transfer interaction can be formed between the guest and the host, and thus efficient removal of I2 and I3- can be realized by TCNQ-MA CTC with the adsorption capacity up to 2.42 g/g and 800 mg/g, respectively. TCNQ-MA CTC can capture 92% of I3- within 2.5 min, showing extremely fast kinetics, excellent selectivity and high affinity (Kd = 5.68 × 106 mL/g). Finally, the TCNQ-MA CTC was successfully applied in the removal of iodine from seawater with the efficiency of 93.71%. This work provides new insights in the construction of charge transfer complexes and lays the foundation for its environmental applications.
RESUMEN
Nanomaterials with enzyme mimetic activity have attracted extensive attention, especially in the regulation of their catalytic activities by biomolecules or other polymers. Here, a covalent organic framework (Tph-BT COF) with excellent photocatalytic activity is constructed by Schiff base reaction, and its mimetic oxidase activity and peroxidase activity is inversely regulated via single-stranded DNA (ssDNA). Under light-emitting diode (LED) light irradiation, Tph-BT exhibited outstanding oxidase activity, which efficiently catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue oxTMB, and ssDNA, especially those with poly-thymidine (T) sequences, can significantly inhibit its oxidase activity. On the contrary, Tph-BT showed weak peroxidase activity, and the presence of ssDNA, particularly poly-cytosine (C) sequences, can remarkably enhance the peroxidase activity. The influence of base type, base length, and other factors on the activities of two enzymes is also studied, and the results reveal that the adsorption of ssDNA on the surface of Tph-BT prevented intersystem crossing (ISC) and energy transfer processes to reduce 1 O2 generation, while the electrostatic interaction between ssDNA and TMB enhanced Tph-BT's affinity for TMB to facilitate the electron transfer from TMB to ⢠OH. This study investigates multitype mimetic enzyme activities of nonmetallic D-A conjugated COFs and demonstrates their feasibility of regulation by ssDNA.
Asunto(s)
Estructuras Metalorgánicas , Oxidorreductasas , ADN de Cadena Simple , Antioxidantes , Peroxidasas , Peroxidasa/metabolismo , Colorimetría/métodosRESUMEN
Nanozymes are nanomaterials with enzyme-mimetic activity. It is known that DNA can interact with various nanozymes in different ways, enhancing or inhibiting the activity of nanozymes, which can be used to develop various biosensors. In this work, we synthesized a photosensitive covalent-organic framework (Tph-BT) as a nanozyme, and its oxidase and peroxidase activities could be reversely regulated by surface modification of single-stranded DNA (ssDNA) for the colorimetric detection of UO22+. Tph-BT exhibits excellent oxidase activity and weak peroxidase activity, and it is surprising to find that the UO22+-specific DNA aptamer can significantly inhibit the oxidase activity while greatly enhancing the peroxidase activity. The present UO22+ interacts with the DNA aptamer to form secondary structures and detaches from the surface of Tph-BT, thereby restoring the enzymatic activity of Tph-BT. Based on the reversed regulation effects of the DNA aptamer on the two types of enzymatic activities of Tph-BT, a novel "off-on" and "on-off" sensing platform can be constructed for the colorimetric analysis of UO22+. This research demonstrates that ssDNA can effectively regulate the different types of enzymatic activities of single COFs and achieve the sensitive and selective colorimetric analysis of radionuclides by the naked eye.
Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Catalítico , Estructuras Metalorgánicas , Uranio , ADN Catalítico/química , Uranio/análisis , Aptámeros de Nucleótidos/química , Colorimetría , Estructuras Metalorgánicas/química , Oxidorreductasas , ADN de Cadena Simple , PeroxidasasRESUMEN
Previous researches of covalent organic frameworks (COFs) have shown their potential as fluorescent probes, but the regulation of their optical properties and recognition characteristics still remains a challenge, and most of reports required complicated post-decoration to improve the sensing performance. In this context, we propose a novel in-situ strategy to construct uracil-conjugated COFs and modulate their fluorescence properties for sensitive and selective mercury(II) detection. By using 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) and 1,3,6,8-tetrakis(4-aminophenyl)pyrene (TAPPy) as fundamental blocks and 5-aminouraci (5-AU) as the functional monomer, a series of COFs (Py-COFs and Py-U-COFs-1 to Py-U-COFs-5) with tunable fluorescence were solvothermally synthesized through an in-situ Schiff base reaction. The π-conjugated framework serves as a signal reporter, the evenly and densely distributed uracil acts as a mercury(II) receptor, and the regular pores (channels) make the rapid and sensitive detection of the mercury(II) possible. In this research, we manage to regulate the crystalline structure, the fluorescence properties, and the sensing performance of COFs by simply changing the molar ratio of precursors. We expect this research to open up a new strategy for effective and controllable construction of functionalized COFs for environmental analysis.
RESUMEN
Bacterial infection causes serious threats to human life, especially with the appearance of antibiotic-resistant bacteria. Phototherapeutic approaches have become promising due to their noninvasiveness, few adverse effects, and high efficiency. Herein, a covalent organic framework (TAPP-BDP) with a conjugated donor-acceptor (D-A) structure has been constructed for efficient photoinduced bacteriostasis. Under the irradiation with a single near-infrared (NIR) light (λ = 808 nm), TAPP-BDP alone involves triple and synergistic bacterial inhibition based on the integration of photodynamic, photothermal, and peroxidase-like enzymatic activities. The unique D-A structure endows TAPP-BDP with a narrow energy band gap, improving its photodynamic and nanozyme activities to generate reactive oxygen species (ROS) to realize the broad-spectrum bactericidal activity. The extended π-conjugated skeleton of TAPP-BDP results in enhanced absorption in NIR, and the remarkable photothermal activity can increase the temperature up to 65 °C to cause efficient bacterial degeneration. TAPP-BDP shows excellent antibacterial efficiency against both Gram-negative and Gram-positive bacteria. Animal experiments further suggest that TAPP-BDP can effectively heal wounds infected with Staphylococcus aureus in living systems.
Asunto(s)
Estructuras Metalorgánicas , Animales , Antibacterianos/química , Antibacterianos/farmacología , Bacterias , Bacterias Grampositivas , Estructuras Metalorgánicas/farmacología , Especies Reactivas de Oxígeno/químicaRESUMEN
In this work, we synthesized a two-dimensional fluorescent covalent-organic framework (TFPB-TTA COF) nanosheet by selecting and designing reactive monomers to realize the dual-functional processing of nitrophenols. The staggered benzene ring, triazine structure, and imine bond (CâN) of the TFPB-TTA COF can capture free nitrophenols through hydrogen bonding and conjugation interaction, and then, the photoinduced electron transfer and fluorescence resonance energy transfer (FRET) between the TFPB-TTA COF and nitrophenols affects the fluorescence emission of the TFPB-TTA COF, realizing the fluorescence sensing of nitrophenols. The large Ksv values and the low detection limit suggest that the TFPB-TTA COF can serve as sensitive and selective fluorescence sensors for nitrophenol detection in an aqueous system. At the same time, the strong interaction combined with the porous network structure of the TFPB-TTA COF facilitates the efficient adsorption and removal of nitrophenols. Especially for 2,4,6-trinitrophenol, the maximum adsorption capacity can reach 1045.53 mg/g with good recyclability and high structural stability of the TFPB-TTA COF. This work proposed a simple synthetic method for the construction of a fluorescent COF platform for the sensitive determination and efficient adsorption of nitrophenols.
Asunto(s)
Estructuras Metalorgánicas , Adsorción , Colorantes , Transferencia Resonante de Energía de Fluorescencia , Estructuras Metalorgánicas/química , NitrofenolesRESUMEN
2D covalent organic frameworks (2D COFs) have been recognized as a novel class of photoactive materials owing to their extended π-electron conjugation and high chemical stabilities. Herein, a new covalent organic framework (Tph-BDP) is facilely synthesized by using a porphyrin derivative and an organic dye BODIPY derivative (5,5-difluoro-2,8-diformyl-1,3,7,9-tetramethyl-10-phenyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazabori-nin-4-ium-5-uide) as monomers for the first time, and their unique photosensitive properties endow them excellent simulated oxidase activity under 635 nm laser irradiation that can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Further findings demonstrate that the presence of uranium (UO22+ ) can coordinate with imines of the oxidation products of TMB, thus modulating the charge transfer process of the colored products accompanied with intensive aggregation and remarkable color fading. This research provides a preparation strategy for COFs with excellent photocatalytic properties and nanozyme activity, and broadens the applications of the simple colorimetric methods for sensitive and selective radionuclide detection.