Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Protein Cell ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733347

RESUMEN

Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.

2.
Nat Neurosci ; 26(7): 1170-1184, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37264159

RESUMEN

Extensive studies indicate that ß-amyloid (Aß) aggregation is pivotal for Alzheimer's disease (AD) progression; however, cumulative evidence suggests that Aß itself is not sufficient to trigger AD-associated degeneration, and whether other additional pathological factors drive AD pathogenesis remains unclear. Here, we characterize pathogenic aggregates composed of ß2-microglobulin (ß2M) and Aß that trigger neurodegeneration in AD. ß2M, a component of major histocompatibility complex class I (MHC class I), is upregulated in the brains of individuals with AD and constitutes the amyloid plaque core. Elevation of ß2M aggravates amyloid pathology independent of MHC class I, and coaggregation with ß2M is essential for Aß neurotoxicity. B2m genetic ablation abrogates amyloid spreading and cognitive deficits in AD mice. Antisense oligonucleotide- or monoclonal antibody-mediated ß2M depletion mitigates AD-associated neuropathology, and inhibition of ß2M-Aß coaggregation with a ß2M-based blocking peptide ameliorates amyloid pathology and cognitive deficits in AD mice. Our findings identify ß2M as an essential factor for Aß neurotoxicity and a potential target for treating AD.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Conocimiento , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Cognición , Precursor de Proteína beta-Amiloide/genética , Placa Amiloide/genética , Modelos Animales de Enfermedad
3.
Cell ; 186(5): 1026-1038.e20, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36868208

RESUMEN

Down syndrome (DS) is a neurological disorder with multiple immune-related symptoms; however, crosstalk between the CNS and peripheral immune system remains unexplored. Using parabiosis and plasma infusion, we found that blood-borne factors drive synaptic deficits in DS. Proteomic analysis revealed elevation of ß2-microglobulin (B2M), a major histocompatibility complex class I (MHC-I) component, in human DS plasma. Systemic administration of B2M in wild-type mice led to synaptic and memory defects similar to those observed in DS mice. Moreover, genetic ablation of B2m or systemic administration of an anti-B2M antibody counteracts synaptic impairments in DS mice. Mechanistically, we demonstrate that B2M antagonizes NMDA receptor (NMDAR) function through interactions with the GluN1-S2 loop; blocking B2M-NMDAR interactions using competitive peptides restores NMDAR-dependent synaptic function. Our findings identify B2M as an endogenous NMDAR antagonist and reveal a pathophysiological role for circulating B2M in NMDAR dysfunction in DS and related cognitive disorders.


Asunto(s)
Síndrome de Down , Receptores de N-Metil-D-Aspartato , Microglobulina beta-2 , Animales , Humanos , Ratones , Microglobulina beta-2/metabolismo , Microglobulina beta-2/farmacología , Disfunción Cognitiva/metabolismo , Reacciones Cruzadas , Parabiosis , Proteómica , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Síndrome de Down/sangre , Síndrome de Down/metabolismo
4.
J Neurosci ; 42(25): 4958-4979, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35606143

RESUMEN

Synaptic abnormality is an important pathologic feature of autism spectrum disorders (ASDs) and responsible for various behavioral defects in these neurodevelopmental disorders. Microglia are the major immune cells in the brain and also play an important role in synapse refinement. Although dysregulated synaptic pruning by microglia during the brain development has been associated with ASDs, the underlying mechanism has yet to be fully elucidated. Herein, we observed that expression of Transmembrane protein 59 (TMEM59), a protein recently shown to regulate microglial function, was decreased in autistic patients. Furthermore, we found that both male and female mice with either complete or microglia-specific loss of Tmem59 developed ASD-like behaviors. Microglial TMEM59-deficient mice also exhibited enhanced excitatory synaptic transmission, increased dendritic spine density, and elevated levels of excitatory synaptic proteins in synaptosomes. TMEM59-deficient microglia had impaired capacity for synapse engulfment both in vivo and in vitro. Moreover, we demonstrated that TMEM59 interacted with the C1q receptor CD93 and TMEM59 deficiency promoted CD93 protein degradation in microglia. Downregulation of CD93 in microglia also impaired synapse engulfment. These findings identify a crucial role of TMEM59 in modulating microglial function on synapse refinement during brain development and suggest that TMEM59 deficiency may contribute to ASDs through disrupting phagocytosis of excitatory synapse and thus distorting the excitatory-inhibitory (E/I) neuronal activity balance.SIGNIFICANCE STATEMENT Microglia play an important role in synapse refinement. Dysregulated synaptic pruning by microglia during brain development has been associated with autism spectrum disorders (ASDs). However, the underlying mechanism has yet to be fully elucidated. Herein, we observe that the expression of Transmembrane protein 59 (TMEM59), an autophagy-related protein, is decreased in autistic patients. Moreover, we find ASD-like behaviors in mice with complete loss and with microglia-specific loss of Tmem59 Mechanistic studies reveal that TMEM59 deficiency in microglia impairs their synapse engulfment ability likely through destabilizing the C1q receptor CD93, thereby leading to enhanced excitatory neurotransmission and increased dendritic spine density. Our findings demonstrate a crucial role of microglial TMEM59 in early neuronal development and provide new insight into the etiology of ASDs.


Asunto(s)
Trastorno Autístico , Microglía , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Microglía/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Fagocitosis , Sinapsis/fisiología
5.
Mol Psychiatry ; 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338313

RESUMEN

Astrocyte aerobic glycolysis provides vital trophic support for central nervous system neurons. However, whether and how astrocytic metabolic dysregulation contributes to neuronal dysfunction in intellectual disability (ID) remain unclear. Here, we demonstrate a causal role for an ID-associated SNX27 mutation (R198W) in cognitive deficits involving reshaping astrocytic metabolism. We generated SNX27R196W (equivalent to human R198W) knock-in mice and found that they displayed deficits in synaptic function and learning behaviors. SNX27R196W resulted in attenuated astrocytic glucose uptake via GLUT1, leading to reduced lactate production and a switch from homeostatic to reactive astrocytes. Importantly, lactate supplementation or a ketogenic diet restored neuronal oxidative phosphorylation and reversed cognitive deficits in SNX27R196W mice. In summary, we illustrate a key role for astrocytic SNX27 in maintaining glucose supply and glycolysis and reveal that altered astrocytic metabolism disrupts the astrocyte-neuron interaction, which contributes to ID. Our work also suggests a feasible strategy for treating ID by restoring astrocytic metabolic function.

6.
J Clin Invest ; 132(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35229730

RESUMEN

Down syndrome (DS), or trisomy 21, is one of the critical risk factors for early-onset Alzheimer's disease (AD), implicating key roles for chromosome 21-encoded genes in the pathogenesis of AD. We previously identified a role for the deubiquitinase USP25, encoded on chromosome 21, in regulating microglial homeostasis in the AD brain; however, whether USP25 affects amyloid pathology remains unknown. Here, by crossing 5×FAD AD and Dp16 DS mice, we observed that trisomy 21 exacerbated amyloid pathology in the 5×FAD brain. Moreover, bacterial artificial chromosome (BAC) transgene-mediated USP25 overexpression increased amyloid deposition in the 5×FAD mouse brain, whereas genetic deletion of Usp25 reduced amyloid deposition. Furthermore, our results demonstrate that USP25 promoted ß cleavage of APP and Aß generation by reducing the ubiquitination and lysosomal degradation of both APP and BACE1. Importantly, pharmacological inhibition of USP25 ameliorated amyloid pathology in the 5×FAD mouse brain. In summary, we identified the DS-related gene USP25 as a critical regulator of AD pathology, and our data suggest that USP25 serves as a potential pharmacological target for AD drug development.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Síndrome de Down , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidosis/metabolismo , Amiloidosis/patología , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Ratones , Ratones Transgénicos , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
7.
Natl Sci Rev ; 8(7): nwab024, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34691693

RESUMEN

Loss-of-function mutations in sorting nexin 14 (SNX14) cause autosomal recessive spinocerebellar ataxia 20, which is a form of early-onset cerebellar ataxia that lacks molecular mechanisms and mouse models. We generated Snx14-deficient mouse models and observed severe motor deficits and cell-autonomous Purkinje cell degeneration. SNX14 deficiency disrupted microtubule organization and mitochondrial transport in axons by destabilizing the microtubule-severing enzyme spastin, which is implicated in dominant hereditary spastic paraplegia with cerebellar ataxia, and compromised axonal integrity and mitochondrial function. Axonal transport disruption and mitochondrial dysfunction further led to degeneration of high-energy-demanding Purkinje cells, which resulted in the pathogenesis of cerebellar ataxia. The antiepileptic drug valproate ameliorated motor deficits and cerebellar degeneration in Snx14-deficient mice via the restoration of mitochondrial transport and function in Purkinje cells. Our study revealed an unprecedented role for SNX14-dependent axonal transport in cerebellar ataxia, demonstrated the convergence of SNX14 and spastin in mitochondrial dysfunction, and suggested valproate as a potential therapeutic agent.

8.
Sci Adv ; 7(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523861

RESUMEN

Down syndrome (DS), caused by trisomy of chromosome 21, is the most significant risk factor for early-onset Alzheimer's disease (AD); however, underlying mechanisms linking DS and AD remain unclear. Here, we show that triplication of homologous chromosome 21 genes aggravates neuroinflammation in combined murine DS-AD models. Overexpression of USP25, a deubiquitinating enzyme encoded by chromosome 21, results in microglial activation and induces synaptic and cognitive deficits, whereas genetic ablation of Usp25 reduces neuroinflammation and rescues synaptic and cognitive function in 5×FAD mice. Mechanistically, USP25 deficiency attenuates microglia-mediated proinflammatory cytokine overproduction and synapse elimination. Inhibition of USP25 reestablishes homeostatic microglial signatures and restores synaptic and cognitive function in 5×FAD mice. In summary, we demonstrate an unprecedented role for trisomy 21 and pathogenic effects associated with microgliosis as a result of the increased USP25 dosage, implicating USP25 as a therapeutic target for neuroinflammation in DS and AD.

9.
Front Cell Dev Biol ; 8: 595357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330482

RESUMEN

Abnormal synaptic transmission leads to learning and memory disorders and is the main feature of neurological diseases. Sorting nexin 27 (SNX27) is an endosomal adaptor protein associated with a variety of nervous system diseases, and it is mainly responsible for the trafficking of postsynaptic membrane receptors. However, the roles of SNX27 in regulating synaptic and cognitive function are not fully understood. Here, we first generated a neuron-specific human-SNX27 transgenic mouse model (hSNX27 Tg) that exhibited enhanced excitatory synaptic transmission and long-term potentiation (LTP). In addition, we found that the hSNX27 Tg mice displayed enhanced learning and memory, lower-level anxiety-like behavior, and increased social interaction. Furthermore, we found that SNX27 overexpression upregulated the expression of glutamate receptors in the cortex and hippocampus of hSNX27 Tg mice. Together, these results indicate that SNX27 overexpression promotes synaptic function and cognition through modulating glutamate receptors.

10.
PLoS Biol ; 17(12): e3000525, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31841517

RESUMEN

Ubiquitin-specific protease (USP) 6 is a hominoid deubiquitinating enzyme previously implicated in intellectual disability and autism spectrum disorder. Although these findings link USP6 to higher brain function, potential roles for USP6 in cognition have not been investigated. Here, we report that USP6 is highly expressed in induced human neurons and that neuron-specific expression of USP6 enhances learning and memory in a transgenic mouse model. Similarly, USP6 expression regulates N-methyl-D-aspartate-type glutamate receptor (NMDAR)-dependent long-term potentiation and long-term depression in USP6 transgenic mouse hippocampi. Proteomic characterization of transgenic USP6 mouse cortex reveals attenuated NMDAR ubiquitination, with concomitant elevation in NMDAR expression, stability, and cell surface distribution with USP6 overexpression. USP6 positively modulates GluN1 expression in transfected cells, and USP6 down-regulation impedes focal GluN1 distribution at postsynaptic densities and impairs synaptic function in neurons derived from human embryonic stem cells. Together, these results indicate that USP6 enhances NMDAR stability to promote synaptic function and cognition.


Asunto(s)
Memoria/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Encéfalo/metabolismo , Potenciales Postsinápticos Excitadores , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/enzimología , Neuronas/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Ubiquitina Tiolesterasa/genética
11.
J Exp Med ; 215(6): 1665-1677, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29739836

RESUMEN

ß-amyloid protein (Aß) plays a central role in the pathogenesis of Alzheimer disease (AD). Aß is generated from sequential cleavage of amyloid precursor protein (APP) by ß-site APP-cleaving enzyme 1 (BACE1) and the γ-secretase complex. Although activation of some protein kinase C (PKC) isoforms such as PKCα and ε has been shown to regulate nonamyloidogenic pathways and Aß degradation, it is unclear whether other PKC isoforms are involved in APP processing/AD pathogenesis. In this study, we report that increased PKCδ levels correlate with BACE1 expression in the AD brain. PKCδ knockdown reduces BACE1 expression, BACE1-mediated APP processing, and Aß production. Conversely, overexpression of PKCδ increases BACE1 expression and Aß generation. Importantly, inhibition of PKCδ by rottlerin markedly reduces BACE1 expression, Aß levels, and neuritic plaque formation and rescues cognitive deficits in an APP Swedish mutations K594N/M595L/presenilin-1 with an exon 9 deletion-transgenic AD mouse model. Our study indicates that PKCδ plays an important role in aggravating AD pathogenesis, and PKCδ may be a potential target in AD therapeutics.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Proteína Quinasa C-delta/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Acetofenonas/farmacología , Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Benzopiranos/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/patología , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Humanos , Ratones Transgénicos , Inhibidor NF-kappaB alfa/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenotipo , Fosforilación/efectos de los fármacos , Proteína Quinasa C-delta/metabolismo , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/metabolismo , Regulación hacia Arriba/efectos de los fármacos
12.
Front Neurol ; 9: 1059, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619032

RESUMEN

Sorting nexin 27 (SNX27) is an endosome-associated cargo adaptor that is involved in various pathologies and development of neurological diseases. However, the role of SNX27 in spinal cord injury (SCI) remains unclear. In this study, we found that SNX27 was up-regulated in injured mice spinal cords by western blot and immunofluorescence. A comparative analysis of Basso mouse scale (BMS), footprint test and corticospinal tract (CST) tracing in Snx27 +/+ and Snx27 +/- mice revealed that haploinsufficiency of SNX27 ameliorated the clinical symptoms of SCI. Based on the results of western blot and immunofluorescence, mechanistically, we found that SNX27 deficiency suppresses apoptotic caspase-3 induced neuronal death. In addition, SNX27 haploinsufficiency lowers the infiltration and activation of macrophage/microglia by suppressing their proliferation at the SCI lesion site. Together, these results suggest that down-regulation of SNX27 is a potential therapy targeting both acute neuronal death and chronic neuroinflammation, and promoting nerve repair after SCI.

13.
Mol Neurobiol ; 54(6): 4189-4200, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27324899

RESUMEN

TMEM59L is a newly identified brain-specific membrane-anchored protein with unknown functions. Herein we found that both TMEM59L and its homolog, TMEM59, are localized in Golgi and endosomes. However, in contrast to a ubiquitous and relatively stable temporal expression of TMEM59, TMEM59L expression was limited in neurons and increased during development. We also found that both TMEM59L and TMEM59 interacted with ATG5 and ATG16L1, and that overexpression of them triggered cell autophagy. However, overexpression of TMEM59L induced intrinsic caspase-dependent apoptosis more dramatically than TMEM59. In addition, downregulation of TMEM59L prevented neuronal cell death and caspase-3 activation caused by hydrogen peroxide insults and reduced the lipidation of LC3B. Finally, we found that AAV-mediated knockdown of TMEM59L in mice significantly ameliorated caspase-3 activation, increased mouse duration in the open arm during elevated plus maze test, reduced mouse immobility time during forced swim test, and enhanced mouse memory during Y-maze and Morris water maze tests. Together, our study indicates that TMEM59L is a pro-apoptotic neuronal protein involved in animal behaviors such as anxiety, depression, and memory, and that TMEM59L downregulation protects neurons against oxidative stress.


Asunto(s)
Apoptosis , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Estrés Oxidativo , Animales , Ansiedad/patología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia , Conducta Animal , Proteínas Portadoras/metabolismo , Caspasa 3/metabolismo , Dependovirus/metabolismo , Depresión/patología , Regulación hacia Abajo/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Peróxido de Hidrógeno/toxicidad , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Neuroprotección/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos
14.
Front Aging Neurosci ; 8: 303, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28018215

RESUMEN

The ubiquitin-proteasome system (UPS) is one of the major protein degradation pathways, where abnormal UPS function has been observed in cancer and neurological diseases. Many neurodegenerative diseases share a common pathological feature, namely intracellular ubiquitin-positive inclusions formed by aggregate-prone neurotoxic proteins. This suggests that dysfunction of the UPS in neurodegenerative diseases contributes to the accumulation of neurotoxic proteins and to instigate neurodegeneration. Here, we review recent findings describing various aspects of UPS dysregulation in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease.

15.
J Neurosci ; 36(50): 12586-12597, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27974614

RESUMEN

Hydrocephalus is a brain disorder derived from CSF accumulation due to defects in CSF clearance. Although dysfunctional apical cilia in the ependymal cell layer are causal to the onset of hydrocephalus, mechanisms underlying proper ependymal cell differentiation are largely unclear. SNX27 is a trafficking component required for normal brain function and was shown previously to suppress γ-secretase-dependent amyloid precursor protein and Notch cleavage. However, it was unclear how SNX27-dependent γ-secretase inhibition could contribute to brain development and pathophysiology. Here, we describe and characterize an Snx27-deleted mouse model for the ependymal layer defects of deciliation and hydrocephalus. SNX27 deficiency results in reductions in ependymal cells and cilia density, as well as severe postnatal hydrocephalus. Inhibition of Notch intracellular domain signaling with γ-secretase inhibitors reversed ependymal cells/cilia loss and dilation of lateral ventricles in Snx27-deficient mice, giving strong indication that Snx27 deletion triggers defects in ependymal layer formation and ciliogenesis through Notch hyperactivation. Together, these results suggest that SNX27 is essential for ependymal cell differentiation and ciliogenesis, and its deletion can promote hydrocephalus pathogenesis. SIGNIFICANCE STATEMENT: Down's syndrome (DS) in humans and mouse models has been shown previously to confer a high risk for the development of pathological hydrocephalus. Because we have previously described SNX27 as a component that is consistently downregulated in DS, we present here a robust Snx27-deleted mouse model that produces hydrocephalus and associated ciliary defects with complete penetrance. In addition, we find that γ-secretase/Notch modulation may be a candidate drug target in SNX27-associated hydrocephalus such as that observed in DS. Based on these findings, we anticipate that future study will determine whether modulation of a SNX27/Notch/γ-secretase pathway can also be of therapeutic interest to congenital hydrocephalus.


Asunto(s)
Diferenciación Celular/fisiología , Cilios/fisiología , Epéndimo/patología , Hidrocefalia/genética , Hidrocefalia/patología , Nexinas de Clasificación/fisiología , Uniones Adherentes/patología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Cilios/patología , Epéndimo/citología , Fibroblastos/efectos de los fármacos , Glutatión/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Receptores Notch/metabolismo , Nexinas de Clasificación/genética
16.
Neuron ; 87(5): 963-75, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26335643

RESUMEN

Progressive supranuclear palsy (PSP) is a movement disorder characterized by tau neuropathology where the underlying mechanism is unknown. An SNP (rs1768208 C/T) has been identified as a strong risk factor for PSP. Here, we identified a much higher T-allele occurrence and increased levels of the pro-apoptotic protein appoptosin in PSP patients. Elevations in appoptosin correlate with activated caspase-3 and caspase-cleaved tau levels. Appoptosin overexpression increased caspase-mediated tau cleavage, tau aggregation, and synaptic dysfunction, whereas appoptosin deficiency reduced tau cleavage and aggregation. Appoptosin transduction impaired multiple motor functions and exacerbated neuropathology in tau-transgenic mice in a manner dependent on caspase-3 and tau. Increased appoptosin and caspase-3-cleaved tau were also observed in brain samples of patients with Alzheimer's disease and frontotemporal dementia with tau inclusions. Our findings reveal a novel role for appoptosin in neurological disorders with tau neuropathology, linking caspase-3-mediated tau cleavage to synaptic dysfunction and behavioral/motor defects.


Asunto(s)
Apoptosis/genética , Caspasa 3/metabolismo , Regulación de la Expresión Génica/genética , Polimorfismo de Nucleótido Simple/genética , Parálisis Supranuclear Progresiva/genética , Proteínas tau/metabolismo , Factores de Edad , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Caspasa 3/genética , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Fuerza de la Mano/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Ratas , Parálisis Supranuclear Progresiva/patología , Parálisis Supranuclear Progresiva/fisiopatología , Proteínas tau/genética
17.
Neurobiol Aging ; 36(3): 1310-5, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25557959

RESUMEN

One major pathologic hallmark and trigger of Alzheimer's disease (AD) is overproduction and accumulation of ß-amyloid (Aß) species in the brain. Aß is derived from ß-amyloid precursor protein (APP) through sequential cleavages by ß- and γ-secretases. Abnormal copper homeostasis also contributes to AD pathogenesis. Recently, we find that a copper-related protein, CutA divalent cation tolerance homolog of Escherichia coli (CUTA), interacts with the ß-secretase ß-site APP cleaving enzyme 1 (BACE1) and inhibits APP ß-processing and Aß generation. Herein, we further found that overexpression of CUTA increases intracellular copper level, whereas copper treatments promote CUTA expression. We also confirmed that copper treatments promote APP expression and Aß secretion. In addition, copper treatments promoted the increase of Aß secretion induced by CUTA downregulation but had no effect on CUTA-ß-site APP cleaving enzyme 1 interaction. On the other hand, CUTA overexpression ameliorated copper-induced Aß secretion but had no effect on APP expression. Moreover, we found that Aß treatments can reduce both CUTA and copper levels in mouse primary neurons. Consistently, both CUTA and copper levels were decreased in the hippocampus of APP/PS1 AD mouse brain. Together, our results reveal a reciprocal modulation of copper and CUTA and suggest that both regulate Aß generation through different mechanisms, although Aß mutually affects copper and CUTA levels.


Asunto(s)
Enfermedad de Alzheimer/etiología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Cobre/fisiología , Proteínas de la Membrana/fisiología , Secretasas de la Proteína Precursora del Amiloide/fisiología , Animales , Ácido Aspártico Endopeptidasas/fisiología , Células Cultivadas , Cobre/metabolismo , Cobre/farmacología , Expresión Génica , Homeostasis , Humanos , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Conejos
18.
Cell Rep ; 9(3): 1023-33, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25437557

RESUMEN

Patients with Down syndrome (DS) invariably develop Alzheimer's disease (AD) pathology in their 40s. We have recently found that overexpression of a chromosome 21-encoded microRNA-155 results in decreased levels of the membrane trafficking component, SNX27, diminishing glutamate receptor recycling and thereby impairing synaptic functions in DS. Here, we report a function of SNX27 in regulating ß-amyloid (Aß) generation by modulating γ-secretase activity. Downregulation of SNX27 using RNAi increased Aß production, whereas overexpression of full-length SNX27, but not SNX27ΔPDZ, reversed the RNAi-mediated Aß elevation. Moreover, genetic deletion of Snx27 promoted Aß production and neuronal loss, whereas overexpression of SNX27 using an adeno-associated viral (AAV) vector reduced hippocampal Aß levels in a transgenic AD mouse model. SNX27 associates with the γ-secretase complex subunit presenilin 1; this interaction dissociates the γ-secretase complex, thus decreasing its proteolytic activity. Our study establishes a molecular mechanism for Aß-dependent pathogenesis in both DS and AD.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/biosíntesis , Nexinas de Clasificación/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Eliminación de Gen , Células HEK293 , Células HeLa , Humanos , Ratones Transgénicos , Modelos Biológicos , Neuronas/metabolismo , Neuronas/patología , Presenilina-1/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , Receptores Notch/metabolismo
19.
Neurosci Lett ; 548: 90-4, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23685131

RESUMEN

Alzheimer's disease (AD) is primarily caused by overproduction/deposition of ß-amyloid (Aß) in the brain. Dysregulation of iron in the brain also contributes to AD. Although iron affects ß-amyloid precursor protein (APP) expression and Aß deposition, detailed role of iron in AD requires further elucidation. Aß is produced by sequential proteolytic cleavages of APP by ß-secretase and γ-secretase. The γ-secretase complex comprises presenilins (PS1 or PS2), nicastrin, APH-1, and PEN-2. Herein, we find that PEN-2 can interact with ferritin light chain (FTL), an important component of the iron storage protein ferritin. In addition, we show that overexpression of FTL increases the protein levels of PEN-2 and PS1 amino-terminal fragment (NTF) and promotes γ-secretase activity for more production of Aß and notch intracellular domain (NICD). Furthermore, iron treatments increase the levels of FTL, PEN-2 and PS1 NTF and promote γ-secretase-mediated NICD production. Moreover, downregulation of FTL decreases the levels of PEN-2 and PS1 NTF. Together, our results suggest that iron can increase γ-secretase activity through promoting the level of FTL that interacts with and stabilizes PEN-2, providing a new molecular link between iron, PEN-2/γ-secretase and Aß generation in AD.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Apoferritinas/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal/fisiología , Activación Enzimática , Células HEK293 , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA