Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(35): e2400446121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39150777

RESUMEN

The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) is a growing concern due to its high mortality and limited treatment options. Although hypermucoviscosity is crucial for CR-hvKp infection, the role of changes in bacterial mucoviscosity in the host colonization and persistence of CR-hvKp is not clearly defined. Herein, we observed a phenotypic switch of CR-hvKp from a hypermucoviscous to a hypomucoviscous state in a patient with scrotal abscess and urinary tract infection (UTI). This switch was attributed to decreased expression of rmpADC, the regulator of mucoid phenotype, caused by deletion of the upstream insertion sequence ISKpn26. Postswitching, the hypomucoid variant showed a 9.0-fold decrease in mice sepsis mortality, a >170.0-fold reduction in the ability to evade macrophage phagocytosis in vitro, and an 11.2- to 40.9-fold drop in growth rate in normal mouse serum. Conversely, it exhibited an increased residence time in the mouse urinary tract (21 vs. 6 d), as well as a 216.4-fold boost in adhesion to bladder epithelial cells and a 48.7% enhancement in biofilm production. Notably, the CR-hvKp mucoid switch was reproduced in an antibiotic-free mouse UTI model. The in vivo generation of hypomucoid variants was primarily associated with defective or low expression of rmpADC or capsule synthesis gene wcaJ, mediated by ISKpn26 insertion/deletion or base-pair insertion. The spontaneous hypomucoid variants also outcompeted hypermucoid bacteria in the mouse urinary tract. Collectively, the ISKpn26-associated mucoid switch in CR-hvKp signifies the antibiotic-independent host adaptive evolution, providing insights into the role of mucoid switch in the persistence of CR-hvKp.


Asunto(s)
Carbapenémicos , Infecciones por Klebsiella , Klebsiella pneumoniae , Infecciones Urinarias , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/genética , Animales , Humanos , Infecciones por Klebsiella/microbiología , Infecciones Urinarias/microbiología , Ratones , Carbapenémicos/farmacología , Masculino , Virulencia/genética , Antibacterianos/farmacología , Sistema Urinario/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Int J Biol Sci ; 20(3): 1004-1023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250155

RESUMEN

Macrophage polarization is a critical process that regulates in inflammation, pathogen defense, and tissue repair. Here we demonstrate that MST1/2, a core kinase of Hippo pathway and a recently identified regulator of inflammation, plays a significant role in promoting M2 polarization. We provide evidence that inhibition of MST1/2, achieved through either gene-knockout or pharmacological treatment, leads to increased M1 polarization in a YAP-dependent manner, resulting in the development of M1-associated inflammatory disorders. Moreover, MST1/2 inhibition also leads to a substantial reduction in M2 polarization, but this occurs through the STAT6 and MEK/ERK signaling. The STAT6 is independent of YAP, but MEK/ERK is dependent of YAP. Consistent with these observations, both MST1/2-conditional knockout mice and wild-type mice treated with XMU-MP-1, a chemical inhibitor of MST1/2, exhibited reduced M2-related renal fibrosis, while simultaneously displaying enhanced LPS-mediated inflammation and improved clearance of MCR3-modified gram-negative bacteria. These findings uncover a novel role of MST1/2 in regulating macrophage polarization and establish it as a potential therapeutic target for the treatment of macrophage-related fibrotic diseases.


Asunto(s)
Inflamación , Activación de Macrófagos , Proteínas Serina-Treonina Quinasas , Animales , Ratones , Técnicas de Inactivación de Genes , Inflamación/genética , Macrófagos , Ratones Noqueados , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Serina-Treonina Quinasas/genética
3.
ACS Infect Dis ; 10(2): 377-383, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38252850

RESUMEN

Shigellosis poses an ongoing global public health threat. The presence and length of the O-antigen in lipopolysaccharide play critical roles in Shigella pathogenesis. The plasmid-mediated opt gene encodes a phosphoethanolamine (PEtN) transferase that catalyzes the addition of PEtN to the O-antigen of Shigella flexneri serotype X and Y strains, converting them into serotype Xv and Yv strains, respectively. Since 2002, these modified strains have become prevalent in China. Here we demonstrate that PEtN-mediated O-antigen modification in S. flexneri increase the severity of corneal infection in guinea pigs without any adaptive cost. This heightened virulence is associated with epithelial cell adhesion and invasion, as well as an enhanced inflammatory response of macrophage. Notably, PEtN addition allow S. flexneri to attenuate the binding of complement C3 and better resist phagocytosis, potentially contributing to the retention of S. flexneri in the host environment.


Asunto(s)
Etanolaminas , Antígenos O , Shigella flexneri , Animales , Cobayas , Antígenos O/genética , Antígenos O/metabolismo , Serotipificación , Plásmidos , Shigella flexneri/genética , Shigella flexneri/metabolismo
4.
Antibiotics (Basel) ; 10(7)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34356793

RESUMEN

Since the first report of the plasmid-mediated, colistin-resistant gene, mcr-1, nine mcr genes and their subvariants have been identified. The spreading scope of mcr-1~10 varies greatly, suggesting that mcr-1~10 may have different evolutionary advantages. Depending on MCR family phylogeny, mcr-6 is highly similar to mcr-1 and -2, and mcr-7~10 are highly similar to mcr-3 and -4. We compared the expression effects of MCR-1~5 on bacteria of common physiological background. The MCR-1-expressing strain showed better growth than did MCR-2~5-expressing strains in the presence of colistin. LIVE/DEAD staining analysis revealed that MCR-3~5 expression exerted more severe fitness burdens on bacteria than did MCR-1 and -2. Bacteria expressing MCRs except MCR-2 showed enhanced virulence with increased epithelial penetration ability determined by trans-well model (p < 0.05). Enhanced virulence was also observed in the Galleria mellonella model, which may have resulted from bacterial membrane damage and different levels of lipopolysaccharide (LPS) release due to MCR expression. Collectively, MCR-1-expressing strain showed the best survival advantage of MCR-1~5-expressing strains, which may partly explain the worldwide distribution of mcr-1. Our results suggested that MCR expression may cause increased bacterial virulence, which is alarming, and further attention will be needed to focus on the control of infectious diseases caused by mcr-carrying pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...