Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(28): e2400737121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968127

RESUMEN

In recent years, the exploration of genome three-dimensional (3D) conformation has yielded profound insights into the regulation of gene expression and cellular functions in both animals and plants. While animals exhibit a characteristic genome topology defined by topologically associating domains (TADs), plants display similar features with a more diverse conformation across species. Employing advanced high-throughput sequencing and microscopy techniques, we investigated the landscape of 26 histone modifications and RNA polymerase II distribution in tomato (Solanum lycopersicum). Our study unveiled a rich and nuanced epigenetic landscape, shedding light on distinct chromatin states associated with heterochromatin formation and gene silencing. Moreover, we elucidated the intricate interplay between these chromatin states and the overall topology of the genome. Employing a genetic approach, we delved into the role of the histone modification H3K9ac in genome topology. Notably, our investigation revealed that the ectopic deposition of this chromatin mark triggered a reorganization of the 3D chromatin structure, defining different TAD-like borders. Our work emphasizes the critical role of H3K9ac in shaping the topology of the tomato genome, providing valuable insights into the epigenetic landscape of this agriculturally significant crop species.


Asunto(s)
Epigenoma , Histonas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Histonas/metabolismo , Histonas/genética , Epigénesis Genética , Genoma de Planta , Cromatina/metabolismo , Cromatina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Heterocromatina/metabolismo , Heterocromatina/genética , Código de Histonas/genética
2.
Biomolecules ; 14(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38927108

RESUMEN

(1) Background: Phytochemicals are crucial antioxidants that play a significant role in preventing cancer. (2) Methods: We explored the use of methyl jasmonate (MeJA) in the in vitro cultivation of D. morbifera adventitious roots (DMAR) and evaluated its impact on secondary metabolite production in DMAR, optimizing concentration and exposure time for cost-effectiveness. We also assessed its anti-inflammatory and anti-lung cancer activities and related gene expression levels. (3) Results: MeJA treatment significantly increased the production of the phenolic compound 3,5-Di-caffeoylquinic acid (3,5-DCQA). The maximum 3,5-DCQA production was achieved with a MeJA treatment at 40 µM for 36 h. MeJA-DMARE displayed exceptional anti-inflammatory activity by inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS) in LPS-induced RAW 264.7 cells. Moreover, it downregulated the mRNA expression of key inflammation-related cytokines. Additionally, MeJA-DMARE exhibited anti-lung cancer activity by promoting ROS production in A549 lung cancer cells and inhibiting its migration. It also modulated apoptosis in lung cancer cells via the Bcl-2 and p38 MAPK pathways. (4) Conclusions: MeJA-treated DMARE with increased 3,5-DCQA production holds significant promise as a sustainable and novel material for pharmaceutical applications thanks to its potent antioxidant, anti-inflammatory, and anti-lung cancer properties.


Asunto(s)
Acetatos , Antiinflamatorios , Ciclopentanos , Neoplasias Pulmonares , Oxilipinas , Raíces de Plantas , Ciclopentanos/farmacología , Oxilipinas/farmacología , Acetatos/farmacología , Acetatos/química , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Humanos , Células RAW 264.7 , Raíces de Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico/metabolismo , Apoptosis/efectos de los fármacos , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacología , Ácido Quínico/química , Células A549 , Sapindaceae/química
3.
New Phytol ; 240(2): 727-743, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37553956

RESUMEN

Although phosphorus is one of the most important essential elements for plant growth and development, the epigenetic regulation of inorganic phosphate (Pi) signaling is poorly understood. In this study, we investigated the biological function and mode of action of the high-mobility-group box 1 protein OsHMGB1 in rice (Oryza sativa), using molecular and genetic approaches. We determined that OsHMGB1 expression is induced by Pi starvation and encodes a nucleus-localized protein. Phenotypic analysis of Oshmgb1 mutant and OsHMGB1 overexpression transgenic plants showed that OsHMGB1 positively regulates Pi homeostasis and plant growth. Transcriptome deep sequencing and chromatin immunoprecipitation followed by sequencing indicated that OsHMGB1 regulates the expression of a series of phosphate starvation-responsive (PSR) genes by binding to their promoters. Furthermore, an assay for transposase-accessible chromatin followed by sequencing revealed that OsHMGB1 is involved in maintaining chromatin accessibility. Indeed, OsHMGB1 occupancy positively correlated with genome-wide chromatin accessibility and gene expression levels. Our results demonstrate that OsHMGB1 is a transcriptional facilitator that regulates the expression of a set of PSR genes to maintain Pi homeostasis in rice by increasing the chromatin accessibility, revealing a key epigenetic mechanism that fine-tune plant acclimation responses to Pi-limited environments.


Asunto(s)
Oryza , Oryza/metabolismo , Cromatina/metabolismo , Proteínas de Plantas/metabolismo , Epigénesis Genética , Homeostasis , Fosfatos/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
4.
Hortic Res ; 10(7): uhad104, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37577397

RESUMEN

Iron (Fe) is an essential micronutrient for all organisms, including plants, whose limited bioavailability restricts plant growth, yield, and nutritional quality. While the transcriptional regulation of plant responses to Fe deficiency have been extensively studied, the contribution of epigenetic modulations, such as DNA methylation, remains poorly understood. Here, we report that treatment with a DNA methylase inhibitor repressed Fe deficiency-induced responses in tomato (Solanum lycopersicum) roots, suggesting the importance of DNA methylation in regulating Fe deficiency responses. Dynamic changes in the DNA methylome in tomato roots responding to short-term (12 hours) and long-term (72 hours) Fe deficiency identified many differentially methylated regions (DMRs) and DMR-associated genes. Most DMRs occurred at CHH sites under short-term Fe deficiency, whereas they were predominant at CG sites following long-term Fe deficiency. Furthermore, no correlation was detected between the changes in DNA methylation levels and the changes in transcript levels of the affected genes under either short-term or long-term treatments. Notably, one exception was CG hypermethylation at the bHLH39 promoter, which was positively correlated with its transcriptional induction. In agreement, we detected lower CG methylation at the bHLH39 promoter and lower bHLH39 expression in MET1-RNA interference lines compared with wild-type seedlings. Virus-induced gene silencing of bHLH39 and luciferase reporter assays revealed that bHLH39 is positively involved in the modulation of Fe homeostasis. Altogether, we propose that dynamic epigenetic DNA methylation in the CG context at the bHLH39 promoter is involved in its transcriptional regulation, thus contributing to the Fe deficiency response of tomato.

5.
Nat Commun ; 14(1): 469, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709329

RESUMEN

The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood. Here, we comprehensively investigated genome-wide chromatin changes associated with transcriptional reprogramming response to heat stress in tomato. Our data show that heat stress induces rapid changes in chromatin architecture, leading to the transient formation of promoter-enhancer contacts, likely driving the expression of heat-stress responsive genes. Furthermore, we demonstrate that chromatin spatial reorganization requires HSFA1a, a transcription factor (TF) essential for heat stress tolerance in tomato. In light of our findings, we propose that TFs play a key role in controlling dynamic transcriptional responses through 3D reconfiguration of promoter-enhancer contacts.


Asunto(s)
Respuesta al Choque Térmico , Solanum lycopersicum , Respuesta al Choque Térmico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica , Cromatina/genética , Solanum lycopersicum/genética
6.
J Integr Plant Biol ; 64(5): 1059-1075, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35297168

RESUMEN

Iron (Fe) homeostasis is critical for plant growth, development, and stress responses. Fe levels are tightly controlled by intricate regulatory networks in which transcription factors (TFs) play a central role. A series of basic helix-loop-helix (bHLH) TFs have been shown to contribute to Fe homeostasis, but the regulatory layers beyond bHLH TFs remain largely unclear. Here, we demonstrate that the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) TF SlSPL-CNR negatively regulates Fe-deficiency responses in tomato (Solanum lycopersicum) roots. Fe deficiency rapidly repressed the expression of SlSPL-CNR, and Fe deficiency responses were intensified in two clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9-generated SlSPL-CNR knock-out lines compared to the wild-type. Comparative transcriptome analysis identified 47 Fe deficiency-responsive genes the expression of which is negatively regulated by SlSPL-CNR, one of which, SlbHLH101, helps regulate Fe uptake genes. SlSPL-CNR localizes the nucleus and interacts with the GTAC and BOX 4 (ATTAAT) motifs in the SlbHLH101 promoter to repress its expression. Inhibition of SlSPL-CNR expression in response to Fe deficiency was well correlated with the expression of the microRNA SlymiR157. SlymiR157-overexpressing tomato lines displayed enhanced Fe deficiency responses, as did SlSPL-CNR loss-of-function mutants. We propose that the SlymiR157-SlSPL-CNR module represents a novel pathway that acts upstream of SlbHLH101 to regulate Fe homeostasis in tomato roots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Deficiencias de Hierro , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo
7.
Plant J ; 107(2): 480-492, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33942424

RESUMEN

Hormone-like signaling peptides play essential roles in plant growth and development; however, few peptides regulating root development have been identified in rice (Oryza sativa). Here, we combined liquid chromatography-tandem mass spectrometry (LC-MS/MS) with whole-genome in silico screening for root-secreted peptides in rice. We identified the five-amino-acid PEPTIDE 1 (PEP1) encoded by OsPEP1 (LOC_Os11g09560). OsPEP1 was expressed highly in root tissues, especially root cap cells and epidermal cells in the root maturation zone. Exogenous application of PEP1 inhibited primary root growth. Notably, OsPEP1 RNA interference (RNAi) lines had short primary roots with small meristems and short cells in the root elongation zone; furthermore, the short root phenotype of OsPEP1 RNAi plants could be rescued by exogenous application of PEP1. Our transcriptome data further revealed that PEP1 could reprogram the expression of genes in different pathways, including oxidation-reduction. OsPEP1 overexpression lines similarly displayed short roots, although this phenotype was not rescued by exogenous PEP1. These results suggest that root growth can be inhibited by both too much and too little PEP1. Our findings highlight PEP1 as a candidate plant peptide hormone regulating root development in rice.


Asunto(s)
Oryza/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Oryza/genética , Oryza/metabolismo , Oxidación-Reducción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , ARN de Planta/genética , Transcriptoma , Secuenciación Completa del Genoma
8.
Plant J ; 100(2): 328-342, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31257621

RESUMEN

Crown root (CR) is the main component of the fibrous root system in cereal crops, but the molecular mechanism underlying CR development is still unclear. Here, we isolated the crown root defect 1 (crd1) mutant from ethyl methane sulfonate-mutated mutant library, which significantly inhibited CR development. The CRD1 was identified through genome resequencing and complementation analysis, which encodes an Xpo1 domain protein: the rice ortholog of Arabidopsis HASTY (HST) and human exportin-5 (XPO5). CRD1 is ubiquitously expressed, with the highest expression levels in the CR primordium at the stem base. CRD1 is a nucleocytoplasmic protein. The crd1 mutant contains significantly reduced miRNA levels in the cytoplasm and nucleus, suggesting that CRD1 is essential for maintaining normal miRNA levels in plant cells. The altered CR phenotype of crd1 was simulated by target mimicry of miR156, suggesting that this defect is due to the disruption of miR156 regulatory pathways. Our analysis of CRD1, the HST ortholog identified in monocots, expands our understanding of the molecular mechanisms underlying miRNA level and CR development.


Asunto(s)
MicroARNs/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Carioferinas/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
J Zhejiang Univ Sci B ; 20(6): 513-527, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31090277

RESUMEN

Aluminum (Al) is the most abundant metal element in the earth's crust. On acid soils, at pH 5.5 or lower, part of insoluble Al-containing minerals become solubilized into soil solution, with resultant highly toxic effects on plant growth and development. Nevertheless, some plants have developed Al-tolerance mechanisms that enable them to counteract this Al toxicity. One such well-documented mechanism is the Al-induced secretion of organic acid anions, including citrate, malate, and oxalate, from plant roots. Once secreted, these anions chelate external Al ions, thus protecting the secreting plant from Al toxicity. Genes encoding the citrate and malate transporters responsible for secretion have been identified and characterized, and accumulating evidence indicates that regulation of the expression of these transporter genes is critical for plant Al tolerance. In this review, we outline the recent history of research into plant Al-tolerance mechanisms, with special emphasis on the physiology of Al-induced secretion of organic acid anions from plant roots. In particular, we summarize the identification of genes encoding organic acid transporters and review current understanding of genes regulating organic acid secretion. We also discuss the possible signaling pathways regulating the expression of organic acid transporter genes.


Asunto(s)
Aluminio/toxicidad , Raíces de Plantas/efectos de los fármacos , Aniones , Transporte Biológico/efectos de los fármacos , Ácido Cítrico/metabolismo , Malatos/metabolismo , Ácido Oxálico/metabolismo , Raíces de Plantas/metabolismo , Transducción de Señal/fisiología
10.
Front Plant Sci ; 9: 557, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755495

RESUMEN

Antagonistic interactions of phosphorus (P) hamper iron (Fe) acquisition by plants and can cause Fe deficiency-induced chlorosis. To determine the physiological processes underlying adverse Fe-P interactions, the maize lines B73 and Mo17, which differ in chlorosis susceptibility, were grown hydroponically at different Fe:P ratios. In the presence of P, Mo17 became more chlorotic than B73. The higher sensitivity of Mo17 to Fe deficiency was not related to Fe-P interactions in leaves but to lower Fe translocation to shoots, which coincided with a larger pool of Fe being fixed in the root apoplast of P-supplied Mo17 plants. Fractionating cell wall components from roots showed that most of the cell wall-contained P accumulated in pectin, whereas most of the Fe was bound to root hemicelluloses, revealing that co-precipitation of Fe and P in the apoplast was not responsible for Fe inactivation in roots. A negative correlation between chlorophyll index and hemicellulose-bound Fe in 85 inbred lines of the intermated maize B73 × Mo17 (IBM) population indicated that apoplastic Fe retention contributes to genotypic differences in chlorosis susceptibility of maize grown under low Fe supplies. Our study indicates that Fe retention in the hemicellulose fraction of roots is an important determinant in the tolerance to Fe deficiency-induced chlorosis of graminaceous plant species with low phytosiderophore release, like maize.

11.
Sci Rep ; 8(1): 428, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323145

RESUMEN

Although xyloglucan (XyG) is reported to bind Aluminium (Al), the influence of XyG fucosylation on the cell wall Al binding capacity and plant Al stress responses is unclear. We show that Arabidopsis T-DNA insertion mutants with reduced AXY3 (XYLOSIDASE1) function and consequent reduced levels of fucosylated XyG are more sensitive to Al than wild-type Col-0 (WT). In contrast, T-DNA insertion mutants with reduced AXY8 (FUC95A) function and consequent increased levels of fucosylated XyG are more Al resistant. AXY3 transcript levels are strongly down regulated in response to 30 min Al treatment, whilst AXY8 transcript levels also repressed until 6 h following treatment onset. Mutants lacking AXY3 or AXY8 function exhibit opposing effects on Al contents of root cell wall and cell wall hemicellulose components. However, there was no difference in the amount of Al retained in the pectin components between mutants and WT. Finally, whilst the total sugar content of the hemicellulose fraction did not change, the altered hemicellulose Al content of the mutants is shown to be a likely consequence of their different XyG fucosylation levels. We conclude that variation in XyG fucosylation levels influences the Al sensitivity of Arabidopsis by affecting the Al-binding capacity of hemicellulose.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Fucosa/metabolismo , Glucanos/química , Polisacáridos/metabolismo , Xilanos/química , Aluminio , Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , ADN Bacteriano/genética , Mutagénesis Insercional , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Xilosidasas/genética , alfa-L-Fucosidasa/genética
12.
Front Plant Sci ; 7: 511, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27148333

RESUMEN

Rice bean (Vigna umbellata) VuMATE1 appears to be constitutively expressed at vascular system but root apex, and Al stress extends its expression to root apex. Whether VuMATE1 participates in both Al tolerance and Fe nutrition, and how VuMATE1 expression is regulated is of great interest. In this study, the role of VuMATE1 in Fe nutrition was characterized through in planta complementation assays. The transcriptional regulation of VuMATE1 was investigated through promoter analysis and promoter-GUS reporter assays. The results showed that the expression of VuMATE1 was regulated by Al stress but not Fe status. Complementation of frd3-1 with VuMATE1 under VuMATE1 promoter could not restore phenotype, but restored with 35SCaMV promoter. Immunostaining of VuMATE1 revealed abnormal localization of VuMATE1 in vasculature. In planta GUS reporter assay identified Al-responsive cis-acting elements resided between -1228 and -574 bp. Promoter analysis revealed several cis-acting elements, but transcription is not simply regulated by one of these elements. We demonstrated that cis regulation of VuMATE1 expression is involved in Al tolerance mechanism, while not involved in Fe nutrition. These results reveal the evolution of VuMATE1 expression for better adaptation of rice bean to acid soils where Al stress imposed but Fe deficiency pressure released.

13.
J Integr Plant Biol ; 57(10): 848-58, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25559189

RESUMEN

Cadmium (Cd) is one of the most toxic elements and can be accumulated in plants easily; meanwhile, eIF5A is a highly conserved protein in all eukaryotic organisms. The present work tried to investigate whether eIF5A is involved in Cd accumulation and sensitivity in Arabidopsis (Arabidopsis thaliana L.) by comparing the wild-type Columbia-0 (Col-0) with a knockdown mutant of AteIF5A-2, fbr12-3 under Cd stress conditions. The results showed that the mutant fbr12-3 accumulated more Cd in roots and shoots and had significantly lower chlorophyll content, shorter root length, and smaller biomass, suggesting that downregulation of AteIF5A-2 makes the mutant more Cd sensitive. Real-time polymerase chain reaction revealed that the expressions of metal transporters involved in Cd uptake and translocation including IRT1, ZIP1, AtNramp3, and AtHMA4 were significantly increased but the expressions of PCS1 and PCS2 related to Cd detoxification were decreased notably in fbr12-3 compared with Col-0. As a result, an increase in MDA and H2 O2 content but decrease in root trolox, glutathione and proline content under Cd stress was observed, indicating that a severer oxidative stress occurs in the mutant. All these results demonstrated for the first time that AteIF5A influences Cd sensitivity by affecting Cd uptake, accumulation, and detoxification in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Factores Eucarióticos de Iniciación/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Factores Eucarióticos de Iniciación/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética
14.
J Integr Plant Biol ; 57(10): 830-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25404058

RESUMEN

Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu + Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu + Cd treatment compared with Cd treatment alone, which was in accordance with the significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that compartmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increasing Cd fixation in the root cell wall and sequestration into the vacuoles.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Pared Celular/efectos de los fármacos , Glucosa/farmacología , Vacuolas/metabolismo , Pared Celular/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Vacuolas/efectos de los fármacos
15.
J Integr Plant Biol ; 51(6): 574-80, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19522816

RESUMEN

Aluminum-induced secretion of organic acids from the root apex has been demonstrated to be one major Al resistance mechanism in plants. However, whether the organic acid concentration is high enough to detoxify Al in the growth medium is frequently questioned. The genotypes of Al-resistant wheat, Cassia tora L. and buckwheat secrete malate, citrate and oxalate, respectively. In the present study we found that at a 35% inhibition of root elongation, the Al activities in the solution were 10, 20, and 50 muM with the corresponding malate, citrate, and oxalate exudation at the rates of 15, 20 and 21 nmol/cm(2) per 12 h, respectively, for the above three plant species. When exogenous organic acids were added to ameliorate Al toxicity, twofold and eightfold higher oxalate and malate concentrations were required to produce the equal effect by citrate. After the root apical cell walls were isolated and preincubated in 1 mM malate, oxalate or citrate solution overnight, the total amount of Al adsorbed to the cell walls all decreased significantly to a similar level, implying that these organic acids own an equal ability to protect the cell walls from binding Al. These findings suggest that protection of cell walls from binding Al by organic acids may contribute significantly to Al resistance.


Asunto(s)
Aluminio/metabolismo , Aluminio/farmacología , Ácidos Carboxílicos/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Magnoliopsida/efectos de los fármacos , Adsorción/efectos de los fármacos , Aluminio/toxicidad , Cassia/citología , Cassia/efectos de los fármacos , Cassia/metabolismo , Citratos/metabolismo , Fagopyrum/citología , Fagopyrum/efectos de los fármacos , Fagopyrum/metabolismo , Cinética , Magnoliopsida/citología , Magnoliopsida/metabolismo , Malatos/metabolismo , Oxalatos/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Triticum/citología , Triticum/efectos de los fármacos , Triticum/metabolismo
16.
J Integr Plant Biol ; 50(12): 1557-62, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19093974

RESUMEN

In various plant species, Fe deficiency increases lateral root branching. However, whether this morphological alteration contributes to the Fe deficiency-induced physiological responses still remains to be demonstrated. In the present research, we demonstrated that the lateral root development of red clover (Trifolium pretense L.) was significantly enhanced by Fe deficient treatment, and the total lateral root number correlated well with the Fe deficiency-induced ferric chelate reductase (FCR) activity. By analyzing the results from Dasgan et al. (2002), we also found that although the two tomato genotypes line227/1 (P1) and Roza (P2) and their reciprocal F1 hybrid lines ("P1 x P2" and "P2 x P1") were cultured under two different lower Fe conditions (10(-6) and 10(-7) M FeEDDHA), their FCR activities are significantly correlated with the lateral root number. More interestingly, the -Fe chlorosis tolerant ability of these four tomato lines displays similar trends with the lateral root density. Taking these results together, it was proposed that the Fe deficiency-induced increases of the lateral root should play an important role in resistance to Fe deficiency, which may act as harnesses of a useful trait for the selection and breeding of more Fe-efficient crops among the genotypes that have evolved a Fe deficiency-induced Fe uptake system.


Asunto(s)
Hierro/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Trifolium/enzimología , Deficiencias de Hierro , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Trifolium/crecimiento & desarrollo
17.
Sci China C Life Sci ; 51(5): 402-9, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18785585

RESUMEN

Virus-induced gene silencing (VIGS) is potentially an attractive reverse-genetics tool for studies of plant gene function, but whether it is effective in silencing mineral nutritional-related genes in roots has not been demonstrated. Here we report on an efficient VIGS system that functions in tomato roots using a modified viral satellite DNA (DNAmbeta) associated with Tomato yellow leaf curl China virus (TYLCCNV). A cDNA fragment of the ferric chelate reductase gene (FROl) from tomato was inserted into the DNAmbeta vector. Tomato roots agro-inoculated with DNAmbeta carrying both a fragment of FRO1 and TYLCCNV used as a helper virus exhibited a significant reduction at the FRO1 mRNA level. As a consequence, ferric chelate reductase activity, as determined by visualization of the pink FeBPDS3 complex was significantly decreased. Our results clearly demonstrated that VIGS system can be employed to investigate gene function associated with plant nutrient uptake in roots.


Asunto(s)
ADN Satélite/genética , FMN Reductasa/genética , Silenciador del Gen , Genes de Plantas , Solanum lycopersicum/genética , Secuencia de Bases , Southern Blotting , Cartilla de ADN , Solanum lycopersicum/enzimología , Plásmidos
18.
Chemosphere ; 62(5): 810-6, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16019055

RESUMEN

TiO(2) thin films were prepared on quartz pipe substrates. Effects of the thickness of the films, the wavelength of the UV light and La doping on efficiencies of background irradiated photocatalysis were investigated, and simultaneously was compared with those of foreground irradiated photocatalysis. The results showed that there was an optimal thickness of the film corresponding with each wavelength of the light source limited in the range from 300 nm to 388 nm in the case of background irradiated photocatalysis, which was quite different from that of foreground irradiated one. But in both cases, the film's photocatalytic activities were enhanced by La non-uniformly doping. The results are useful for the design of high-efficiency photocatalytic reactors.


Asunto(s)
Fotoquímica/métodos , Titanio/química , Titanio/efectos de la radiación , Catálisis , Electroquímica/métodos , Lantano/química , Soluciones , Rayos Ultravioleta
19.
Huan Jing Ke Xue ; 26(3): 135-40, 2005 May.
Artículo en Chino | MEDLINE | ID: mdl-16124486

RESUMEN

In terms of the UV irradiating directions, photocatalysis with TiO2 thin films can be divided into two types, the background irradiated photocatalysis and the foreground irradiated one. Comparatively, background irradiated photocatalysis has an advantage of avoiding the UV light attenuation which foreground irradiated one suffers when the light is going through the solution. In this article, the influence of the thickness of the films, the wavelength of light source and non-uninformly doping with V on the photocatalytic efficiency of the catalyst in case of background irradiated photocatalysis is investigated, and simultaneously it is compared with foreground irradiated one. The results show that in case of background irradiated photocatalysis there is an optimal thickness of the film according to the wavelength of the light source that is limited in the range of 300 nm to 388 nm, which is quite different from foreground irradiated one. But in both cases, the catalyst's photocatalytic activities are improved by non-uniformly doped with V.


Asunto(s)
Contaminación Ambiental/prevención & control , Fotoquímica/métodos , Titanio/química , Purificación del Agua/métodos , Radiación de Fondo , Catálisis , Rayos Ultravioleta
20.
Ying Yong Sheng Tai Xue Bao ; 15(9): 1641-9, 2004 Sep.
Artículo en Chino | MEDLINE | ID: mdl-15669501

RESUMEN

Aluminium toxicity is the major factor limiting crop growth on acid soils, which greatly affects the crop productivity on about 40% cultivated soils of the world and 21% of China. In the past decades, a lot of researches on aluminium toxicity and resistant mechanisms have been doing, and great progress was achieved. This paper dealt with the genetic differences in aluminium tolerance among plants, screening and selecting methods and technologies for identifying aluminium resistance in plants, and physiological and molecular mechanism resistance to aluminium toxicity. Some aspects needed to be further studied were also briefly discussed.


Asunto(s)
Adaptación Fisiológica/genética , Aluminio/farmacología , Productos Agrícolas/genética , Fenómenos Fisiológicos de las Plantas , Ácidos/análisis , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Suelo/análisis , Contaminantes del Suelo/análisis , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...