Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202404825, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647332

RESUMEN

Aqueous Zn-ion batteries (ZIBs) are promising next-generation energy storage devices, yet suffer from the issues of hydrogen evolution reaction (HER) and intricate side reactions on the Zn anode surface. The hydrogen (H)-bond networks play a critical role in interfacial proton transport that may closely relate to HER but are rarely investigated. Herein, we report a self-assembled monolayer (SAM) strategy which is constructed by anchoring ionic liquid cations on Ti3C2Tx substrate for HER-free Zn anode. Molecule dynamics simulations reveal that the rationally designed SAM with a high coordination number of water molecules (25-27, 4-6 for Zn2+) largely reduces the interfacial densities of H2O molecules, therefore breaking the connectivity of H-bond networks and blocking proton transport on the interface, by which the HER is suppressed. Then, a series of in situ characterizations demonstrate that negligible amounts of H2 gas are collected from the Zn@SAM-MXene anode. Consequently, the symmetric cell enables a long-cycling life of 3000 h at 1 mA cm-2 and 1000 h at 5 mA cm-2. More significantly, the stable Zn@SAM-MXene films are successfully used for coin full cells showing high-capacity retention of over 94 % after 1000 cycles and large-area (10×5 cm2) pouch cells with desired performance.

2.
Nanomicro Lett ; 15(1): 46, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36752865

RESUMEN

Aqueous zinc-ion battery (ZIB) featuring with high safety, low cost, environmentally friendly, and high energy density is one of the most promising systems for large-scale energy storage application. Despite extensive research progress made in developing high-performance cathodes, the Zn anode issues, such as Zn dendrites, corrosion, and hydrogen evolution, have been observed to shorten ZIB's lifespan seriously, thus restricting their practical application. Engineering advanced Zn anodes based on two-dimensional (2D) materials are widely investigated to address these issues. With atomic thickness, 2D materials possess ultrahigh specific surface area, much exposed active sites, superior mechanical strength and flexibility, and unique electrical properties, which confirm to be a promising alternative anode material for ZIBs. This review aims to boost rational design strategies of 2D materials for practical application of ZIB by combining the fundamental principle and research progress. Firstly, the fundamental principles of 2D materials against the drawbacks of Zn anode are introduced. Then, the designed strategies of several typical 2D materials for stable Zn anodes are comprehensively summarized. Finally, perspectives on the future development of advanced Zn anodes by taking advantage of these unique properties of 2D materials are proposed.

3.
Chemistry ; 29(10): e202203334, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36409403

RESUMEN

The demand for high-energy-density and safe energy storage devices has spurred increasing interest in high-voltage rechargeable magnesium batteries (RMB). As electrolytes are the bridge connecting the cathode and anode materials, the development of high-voltage electrolytes is the key factor in realizing high-voltage RMBs. This concept presents an overview of three chloride-free electrolyte systems with wide electrochemical windows, together with the degradation mechanisms and modification strategies at the anode/electrolyte interphase. Finally, future directions in stabilizing Mg anodes and realizing high-voltage RMBs are highlighted.

4.
Materials (Basel) ; 17(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38204067

RESUMEN

Aqueous zinc-ion batteries (ZIBs) have significant potential for large energy storage systems because of their high energy density, cost-effectiveness and environmental friendliness. However, the limited voltage window, poor reaction kinetics and structural instability of cathode materials are current bottlenecks which contain the further development of ZIBs. In this work, we rationally design a Ni-doped V2O5@3D Ni core/shell composite on a carbon cloth electrode (Ni-V2O5@3D Ni@CC) by growing Ni-V2O5 on free-standing 3D Ni metal nanonets for high-voltage and high-capacity ZIBs. Impressively, embedded Ni doping increases the interlayer spacing of V2O5, extending the working voltage and improving the zinc-ion (Zn302+) reaction kinetics of the cathode materials; at the same time, the 3D structure, with its high specific surface area and superior electronic conductivity, aids in fast Zn302+ transport. Consequently, the as-designed Ni-V2O5@3D Ni@CC cathodes can operate within a wide voltage window from 0.3 to 1.8 V vs. Zn30/Zn302+ and deliver a high capacity of 270 mAh g-1 (~1050 mAh cm-3) at a high current density of 0.8 A g-1. In addition, reversible Zn2+ (de)incorporation reaction mechanisms in the Ni-V2O5@3D Ni@CC cathodes are investigated through multiple characterization methods (SEM, TEM, XRD, XPS, etc.). As a result, we achieved significant progress toward practical applications of ZIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA