Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Oncol ; 14: 1353446, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690169

RESUMEN

Objective: The objective of this study was to provide a multi-modal deep learning framework for forecasting the survival of rectal cancer patients by utilizing both digital pathological images data and non-imaging clinical data. Materials and methods: The research included patients diagnosed with rectal cancer by pathological confirmation from January 2015 to December 2016. Patients were allocated to training and testing sets in a randomized manner, with a ratio of 4:1. The tissue microarrays (TMAs) and clinical indicators were obtained. Subsequently, we selected distinct deep learning models to individually forecast patient survival. We conducted a scanning procedure on the TMAs in order to transform them into digital pathology pictures. Additionally, we performed pre-processing on the clinical data of the patients. Subsequently, we selected distinct deep learning algorithms to conduct survival prediction analysis using patients' pathological images and clinical data, respectively. Results: A total of 292 patients with rectal cancer were randomly allocated into two groups: a training set consisting of 234 cases, and a testing set consisting of 58 instances. Initially, we make direct predictions about the survival status by using pre-processed Hematoxylin and Eosin (H&E) pathological images of rectal cancer. We utilized the ResNest model to extract data from histopathological images of patients, resulting in a survival status prediction with an AUC (Area Under the Curve) of 0.797. Furthermore, we employ a multi-head attention fusion (MHAF) model to combine image features and clinical features in order to accurately forecast the survival rate of rectal cancer patients. The findings of our experiment show that the multi-modal structure works better than directly predicting from histopathological images. It achieves an AUC of 0.837 in predicting overall survival (OS). Conclusions: Our study highlights the potential of multi-modal deep learning models in predicting survival status from histopathological images and clinical information, thus offering valuable insights for clinical applications.

2.
Sci Rep ; 14(1): 8921, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637615

RESUMEN

Durability is one of the technical bottlenecks restricting fuel cell electric vehicle development. As a result, significant time and resources have been invested in research related to this area worldwide. Current durability research mainly focuses on the single cell and stack levels, which is quite different from the usage scenarios of actual vehicles. There is almost no research on developing durability test cycles on the fuel cell system level. This paper proposes a universal model for developing a durability test cycle for fuel cell system based on the China automotive test cycle. Large-scale comparison tests of the fuel cell systems are conducted. After 1000 h test, the output performance degradation of three mass-produced fuel cell system is 14.49%, 9.59%, and 4.21%, respectively. The test results show that the durability test cycle proposed in this paper can effectively accelerate the durability test of the fuel cell system and evaluate the durability performance of the fuel cell system. Moreover, the methodology proposed in this paper could be used in any other test cycles such as NEDC (New European Driving Cycle), WLTC (Worldwide Harmonized Light Vehicles Test Procedure), etc. And it has comprehensive application value and are significant for reducing the cost of durability testing of fuel cell systems and promoting the industrialization of fuel cell electric vehicles.

3.
Liver Int ; 44(2): 330-343, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38014574

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) has reached epidemic proportions worldwide and is the most frequent cause of chronic liver disease in developed countries. Within the spectrum of liver disease in MAFLD, steatohepatitis is a progressive form of liver disease and hepatocyte ballooning (HB) is a cardinal pathological feature of steatohepatitis. The accurate and reproducible diagnosis of HB is therefore critical for the early detection and treatment of steatohepatitis. Currently, a diagnosis of HB relies on pathological examination by expert pathologists, which may be a time-consuming and subjective process. Hence, there has been interest in developing automated methods for diagnosing HB. This narrative review briefly discusses the development of artificial intelligence (AI) technology for diagnosing fatty liver disease pathology over the last 30 years and provides an overview of the current research status of AI algorithms for the identification of HB, including published articles on traditional machine learning algorithms and deep learning algorithms. This narrative review also provides a summary of object detection algorithms, including the principles, historical developments, and applications in the medical image analysis. The potential benefits of object detection algorithms for HB diagnosis (specifically those combined with a transformer architecture) are discussed, along with the future directions of object detection algorithms in HB diagnosis and the potential applications of generative AI on transformer architecture in this field. In conclusion, object detection algorithms have huge potential for the identification of HB and could make the diagnosis of MAFLD more accurate and efficient in the near future.


Asunto(s)
Inteligencia Artificial , Enfermedad del Hígado Graso no Alcohólico , Humanos , Algoritmos , Tecnología , Hepatocitos
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(5): 915-922, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37866946

RESUMEN

Objective: To propose an improved algorithm for thyroid nodule object detection based on Faster R-CNN so as to improve the detection precision of thyroid nodules in ultrasound images. Methods: The algorithm used ResNeSt50 combined with deformable convolution (DC) as the backbone network to improve the detection effect of irregularly shaped nodules. Feature pyramid networks (FPN) and Region of Interest (RoI) Align were introduced in the back of the trunk network. The former was used to reduce missed or mistaken detection of thyroid nodules, and the latter was used to improve the detection precision of small nodules. To improve the generalization ability of the model, parameters were updated during backpropagation with an optimizer improved by Sharpness-Aware Minimization (SAM). Results: In this experiment, 6 261 thyroid ultrasound images from the Affiliated Hospital of Xuzhou Medical University and the First Hospital of Nanjing were used to compare and evaluate the effectiveness of the improved algorithm. According to the findings, the algorithm showed optimization effect to a certain degree, with the AP50 of the final test set being as high as 97.4% and AP@50:5:95 also showing a 10.0% improvement compared with the original model. Compared with both the original model and the existing models, the improved algorithm had higher detection precision and improved capacity to detect thyroid nodules with better accuracy and precision. In particular, the improved algorithm had a higher recall rate under the requirement of lower detection frame precision. Conclusion: The improved method proposed in the study is an effective object detection algorithm for thyroid nodules and can be used to detect thyroid nodules with accuracy and precision.


Asunto(s)
Nódulo Tiroideo , Humanos , Nódulo Tiroideo/diagnóstico por imagen , Redes Neurales de la Computación , Algoritmos , Ultrasonografía/métodos
6.
Hepatobiliary Surg Nutr ; 12(4): 507-522, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37600991

RESUMEN

Background: There is an unmet need for accurate non-invasive methods to diagnose non-alcoholic steatohepatitis (NASH). Since impedance-based measurements of body composition are simple, repeatable and have a strong association with non-alcoholic fatty liver disease (NAFLD) severity, we aimed to develop a novel and fully automatic machine learning algorithm, consisting of a deep neural network based on impedance-based measurements of body composition to identify NASH [the bioeLectrical impEdance Analysis foR Nash (LEARN) algorithm]. Methods: A total of 1,259 consecutive subjects with suspected NAFLD were screened from six medical centers across China, of which 766 patients with biopsy-proven NAFLD were included in final analysis. These patients were randomly subdivided into the training and validation groups, in a ratio of 4:1. The LEARN algorithm was developed in the training group to identify NASH, and subsequently, tested in the validation group. Results: The LEARN algorithm utilizing impedance-based measurements of body composition along with age, sex, pre-existing hypertension and diabetes, was able to predict the likelihood of having NASH. This algorithm showed good discriminatory ability for identifying NASH in both the training and validation groups [area under the receiver operating characteristics (AUROC): 0.81, 95% CI: 0.77-0.84 and AUROC: 0.80, 95% CI: 0.73-0.87, respectively]. This algorithm also performed better than serum cytokeratin-18 neoepitope M30 (CK-18 M30) level or other non-invasive NASH scores (including HAIR, ION, NICE) for identifying NASH (P value <0.001). Additionally, the LEARN algorithm performed well in identifying NASH in different patient subgroups, as well as in subjects with partial missing body composition data. Conclusions: The LEARN algorithm, utilizing simple easily obtained measures, provides a fully automated, simple, non-invasive method for identifying NASH.

8.
Liver Int ; 43(6): 1170-1182, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37017559

RESUMEN

Hepatocytic ballooning is a key histological feature in the diagnosis of non-alcoholic steatohepatitis (NASH) and is an essential component of the two most widely used histological scoring systems for diagnosing and staging non-alcoholic fatty liver disease (NAFLD) [namely, the NAFLD activity score (NAS), and the steatosis, activity and fibrosis (SAF) scoring system]. As a result of the increasing incidence of NASH globally, the diagnostic challenges of hepatocytic ballooning are unprecedented. Despite the clear pathological concept of hepatocytic ballooning, there are still challenges in assessing hepatocytic ballooning in 'real life' situations. Hepatocytic ballooning can be confused with cellular oedema and microvesicular steatosis. Significant inter-observer variability does exist in assessing the presence and severity of hepatocytic ballooning. In this review article, we describe the underlying mechanisms associated with hepatocytic ballooning. Specifically, we discuss the increased endoplasmic reticulum stress and the unfolded protein response, as well as the rearrangement of the intermediate filament cytoskeleton, the appearance of Mallory-Denk bodies and activation of the sonic Hedgehog pathway. We also discuss the use of artificial intelligence in the detection and interpretation of hepatocytic ballooning, which may provide new possibilities for future diagnosis and treatment.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Hígado/patología , Inteligencia Artificial , Proteínas Hedgehog , Índice de Severidad de la Enfermedad , Biopsia
9.
BMC Med Imaging ; 23(1): 56, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37060061

RESUMEN

BACKGROUND: Identifying thyroid nodules' boundaries is crucial for making an accurate clinical assessment. However, manual segmentation is time-consuming. This paper utilized U-Net and its improved methods to automatically segment thyroid nodules and glands. METHODS: The 5822 ultrasound images used in the experiment came from two centers, 4658 images were used as the training dataset, and 1164 images were used as the independent mixed test dataset finally. Based on U-Net, deformable-pyramid split-attention residual U-Net (DSRU-Net) by introducing ResNeSt block, atrous spatial pyramid pooling, and deformable convolution v3 was proposed. This method combined context information and extracts features of interest better, and had advantages in segmenting nodules and glands of different shapes and sizes. RESULTS: DSRU-Net obtained 85.8% mean Intersection over Union, 92.5% mean dice coefficient and 94.1% nodule dice coefficient, which were increased by 1.8%, 1.3% and 1.9% compared with U-Net. CONCLUSIONS: Our method is more capable of identifying and segmenting glands and nodules than the original method, as shown by the results of correlational studies.


Asunto(s)
Redes Neurales de la Computación , Nódulo Tiroideo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Nódulo Tiroideo/diagnóstico por imagen , Ultrasonografía/métodos
10.
Liver Int ; 43(6): 1234-1246, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36924436

RESUMEN

BACKGROUND & AIMS: There is an unmet clinical need for non-invasive tests to diagnose non-alcoholic fatty liver disease (NAFLD) and individual fibrosis stages. We aimed to test whether urine protein panels could be used to identify NAFLD, NAFLD with fibrosis (stage F ≥ 1) and NAFLD with significant fibrosis (stage F ≥ 2). METHODS: We collected urine samples from 100 patients with biopsy-confirmed NAFLD and 40 healthy volunteers, and proteomics and bioinformatics analyses were performed in this derivation cohort. Diagnostic models were developed for detecting NAFLD (UPNAFLD model), NAFLD with fibrosis (UPfibrosis model), or NAFLD with significant fibrosis (UPsignificant fibrosis model). Subsequently, the derivation cohort was divided into training and testing sets to evaluate the efficacy of these diagnostic models. Finally, in a separate independent validation cohort of 100 patients with biopsy-confirmed NAFLD and 45 healthy controls, urinary enzyme-linked immunosorbent assay analyses were undertaken to validate the accuracy of these new diagnostic models. RESULTS: The UPfibrosis model and the UPsignificant fibrosis model showed an AUROC of .863 (95% CI: .725-1.000) and 0.858 (95% CI: .712-1.000) in the training set; and .837 (95% CI: .711-.963) and .916 (95% CI: .825-1.000) in the testing set respectively. The UPNAFLD model showed an excellent diagnostic performance and the area under the receiver operator characteristic curve (AUROC) exceeded .90 in the derivation cohort. In the independent validation cohort, the AUROC for all three of the above diagnostic models exceeded .80. CONCLUSIONS: Our newly developed models constructed from urine protein biomarkers have good accuracy for non-invasively diagnosing liver fibrosis in NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Cirrosis Hepática/patología , Fibrosis , Biomarcadores/metabolismo , Biopsia , Hígado/patología
11.
Gastrointest Endosc ; 97(3): 435-444.e2, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36252870

RESUMEN

BACKGROUND AND AIMS: The prevalence of high-risk varices (HRV) is low among compensated cirrhotic patients undergoing EGD. Our study aimed to identify a novel machine learning (ML)-based model, named ML EGD, for ruling out HRV and avoiding unnecessary EGDs in patients with compensated cirrhosis. METHODS: An international cohort from 17 institutions from China, Singapore, and India were enrolled (CHESS2001). The variables with the top 3 importance scores (liver stiffness, platelet count, and total bilirubin) were selected by the Shapley additive explanation and input into a light gradient-boosting machine algorithm to develop ML EGD for identification of HRV. Furthermore, we built a web-based calculator for ML EGD, which is free with open access (http://www.pan-chess.cn/calculator/MLEGD_score). Unnecessary EGDs that were not performed and the rates of missed HRV were used to assess the efficacy and safety for varices screening. RESULTS: Of 2794 enrolled patients, 1283 patients formed a real-world cohort from 1 university hospital in China used to develop and internally validate the performance of ML EGD for varices screening. They were randomly assigned into the training (n = 1154) and validation (n = 129) cohorts with a ratio of 9:1. In the training cohort, ML EGD spared 607 (52.6%) unnecessary EGDs with a missed HRV rate of 3.6%. In the validation cohort, ML EGD spared 75 (58.1%) EGDs with a missed HRV rate of 1.4%. To externally test the performance of ML EGD, 966 patients from 14 university hospitals in China (test cohort 1) and 545 from 2 hospitals in Singapore and India (test cohort 2) comprised the 2 test cohorts. In test cohort 1, ML EGD spared 506 (52.4%) EGDs with a missed HRV rate of 2.8%. In test cohort 2, ML EGD spared 224 (41.1%) EGDs with a missed HRV rate of 3.1%. When compared with the Baveno VI criteria, ML EGD spared more screening EGDs in all cohorts (training cohort, 52.6% vs 29.4%; validation cohort, 58.1% vs 44.2%; test cohort 1, 52.4% vs 26.5%; test cohort 2, 41.1% vs 21.1%, respectively; P < .001). CONCLUSIONS: We identified a novel model based on liver stiffness, platelet count, and total bilirubin, named ML EGD, as a free web-based calculator. ML EGD could efficiently help rule out HRV and avoid unnecessary EGDs in patients with compensated cirrhosis. (Clinical trial registration number: NCT04307264.).


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Várices Esofágicas y Gástricas , Várices , Humanos , Várices Esofágicas y Gástricas/diagnóstico , Várices Esofágicas y Gástricas/etiología , Cirrosis Hepática/complicaciones , Bilirrubina , Aprendizaje Automático
12.
Hepatol Int ; 17(2): 339-349, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36369430

RESUMEN

BACKGROUND/PURPOSE OF THE STUDY: There is a need to find a standardized and low-risk diagnostic tool that can non-invasively detect non-alcoholic steatohepatitis (NASH). Surface enhanced Raman spectroscopy (SERS), which is a technique combining Raman spectroscopy (RS) with nanotechnology, has recently received considerable attention due to its potential for improving medical diagnostics. We aimed to investigate combining SERS and neural network approaches, using a liver biopsy dataset to develop and validate a new diagnostic model for non-invasively identifying NASH. METHODS: Silver nanoparticles as the SERS-active nanostructures were mixed with blood serum to enhance the Raman scattering signals. The spectral data set was used to train the NASH classification model by a neural network primarily consisting of a fully connected residual module. RESULTS: Data on 261 Chinese individuals with biopsy-proven NAFLD were included and a prediction model for NASH was built based on SERS spectra and neural network approaches. The model yielded an AUROC of 0.83 (95% confidence interval [CI] 0.70-0.92) in the validation set, which was better than AUROCs of both serum CK-18-M30 levels (AUROC 0.63, 95% CI 0.48-0.76, p = 0.044) and the HAIR score (AUROC 0.65, 95% CI 0.51-0.77, p = 0.040). Subgroup analyses showed that the model performed well in different patient subgroups. CONCLUSIONS: Fully connected neural network-based serum SERS analysis is a rapid and practical tool for the non-invasive identification of NASH. The online calculator website for the estimated risk of NASH is freely available to healthcare providers and researchers ( http://www.pan-chess.cn/calculator/RAMAN_score ).


Asunto(s)
Nanopartículas del Metal , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Espectrometría Raman , Suero , Plata , Redes Neurales de la Computación , Biopsia/métodos , Hígado/patología , Biomarcadores
13.
Front Oncol ; 12: 986867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408144

RESUMEN

Introduction: Post-hepatectomy liver failure (PHLF) is one of the most serious complications and causes of death in patients with hepatocellular carcinoma (HCC) after hepatectomy. This study aimed to develop a novel machine learning (ML) model based on the light gradient boosting machines (LightGBM) algorithm for predicting PHLF. Methods: A total of 875 patients with HCC who underwent hepatectomy were randomized into a training cohort (n=612), a validation cohort (n=88), and a testing cohort (n=175). Shapley additive explanation (SHAP) was performed to determine the importance of individual variables. By combining these independent risk factors, an ML model for predicting PHLF was established. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value, negative predictive value, and decision curve analyses (DCA) were used to evaluate the accuracy of the ML model and compare it to that of other noninvasive models. Results: The AUCs of the ML model for predicting PHLF in the training cohort, validation cohort, and testing cohort were 0.944, 0.870, and 0.822, respectively. The ML model had a higher AUC for predicting PHLF than did other non-invasive models. The ML model for predicting PHLF was found to be more valuable than other noninvasive models. Conclusion: A novel ML model for the prediction of PHLF using common clinical parameters was constructed and validated. The novel ML model performed better than did existing noninvasive models for the prediction of PHLF.

14.
Cell Rep Med ; 3(3): 100563, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35492878

RESUMEN

The hepatic venous pressure gradient (HVPG) is the gold standard for cirrhotic portal hypertension (PHT), but it is invasive and specialized. Alternative non-invasive techniques are needed to assess the hepatic venous pressure gradient (HVPG). Here, we develop an auto-machine-learning CT radiomics HVPG quantitative model (aHVPG), and then we validate the model in internal and external test datasets by the area under the receiver operating characteristic curves (AUCs) for HVPG stages (≥10, ≥12, ≥16, and ≥20 mm Hg) and compare the model with imaging- and serum-based tools. The final aHVPG model achieves AUCs over 0.80 and outperforms other non-invasive tools for assessing HVPG. The model shows performance improvement in identifying the severity of PHT, which may help non-invasive HVPG primary prophylaxis when transjugular HVPG measurements are not available.


Asunto(s)
Inteligencia Artificial , Hipertensión Portal , Diagnóstico por Imagen , Humanos , Hipertensión Portal/diagnóstico por imagen , Cirrosis Hepática/complicaciones , Presión Portal
15.
Front Bioeng Biotechnol ; 10: 816209, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35284413

RESUMEN

Excessive chondrocyte degeneration and inflammation are the pathological features of osteoarthritis (OA), and altered miR-212-5p may contribute to meniscus and cartilage degeneration. Whether exosomes derived from miR-212-5p overexpressed synovial mesenchymal stem cells (SMSC-212-5p-Exos) could be utilized to treat degenerative chondrocytes is investigated in this study. Down-regulated miR-212-5p and up-regulated E74 Like ETS Transcription Factor 3 (ELF3) expression were detected in OA synovial tissues, which showed a negative correlation (r = -0.55, p = 0.002). miR-212-5p directly targeted ELF3 and regulated the relative expression of ELF3 in SMSCs as indicated by luciferase reporter assay and RT-PCR. The relative expression of ELF3, chondrocyte degeneration-related molecules, matrix metalloproteinase, and inflammatory molecules were detected in chondrocytes stimulated with interleukin (IL)-1ß or co-incubated with SMSC-212-5p-Exos or SMSCs-derived exosomes (SMSC-Exos). IL-1ß induced up-regulation of ELF3, down-regulation of degeneration molecules (Collagen II, Aggrecan, and Sox9), up-regulation of matrix metalloproteinase (MMP-1, MMP-3, and MMP-13), and up-regulation of inflammatory molecules (IL-6, MCP-1, TNF-α, COX-2, and iNOS) could be inhibited by SMSC-212-5p-Exos or SMSC-Exos administration. When compared with the SMSC-Exos, SMSC-212-5p-Exos showed more treatment benefits. All of these indicate that SMSC-212-5p-Exos could suppress chondrocyte degeneration and inflammation by targeting ELF3, which can be considered as a disease-modifying strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...