RESUMEN
BACKGROUND: Obesity is accompanied by inflammation, which significantly affects the homeostasis of the immune microenvironment. Hematopoietic stem cells (HSCs), residing primarily in the bone marrow, play a vital role in maintaining and producing diverse mature blood cell lineages for the adult hematopoietic and immune systems. However, how HSCs development is affected by obese-promoting inflammation, and the mechanism by which HSC hematopoietic potency is affected by inflammatory signals originating from the obese-promoting changes on bone marrow niche remain unclear. This study elucidates the relationship between obesity-promoting inflammation and HSC fate determination. METHODS: The obesity mice model was established by feeding C57BL/6J mice a high-fat diet (HFD) containing 60% kcal fat. After 6 weeks, HSCs were analyzed using flow cytometry and identified key inflammation cytokine. Transcriptome sequencing techniques were used to discern the distinct pathways in HSCs. Ultimately, confirming the biological mechanism of obesity-induced HSC fate changes via Anakinra blocking specific inflammatory signals. RESULTS: Obesity caused by HFD changed the physical and biochemical properties of the bone marrow niche. In the HFD mice, the population of long-term HSCs in the bone marrow was decreased and facilitated HSCs differentiation towards the myeloid lineage. In addition, HFD increased expression of the inflammatory factor IL-1ß in the bone marrow, and a significantly increased expression of IL-1r1 and active p38/MAPK signaling pathway were detected in the HSCs. Inhibition of IL-1ß further normalized the expression of genes in p38/MAPK pathway and reversed HSC fate. CONCLUSIONS: These findings have been demonstrated that the p38/MAPK signaling pathway in HSCs is activated by elevated levels of IL-1ß within the HSC niche in obese models, thereby regulating HSC differentiation. It suggested a direct link between obesity-promoting inflammation and myeloid differentiation bias of HSCs in the HFD mice.
Asunto(s)
Dieta Alta en Grasa , Células Madre Hematopoyéticas , Interleucina-1beta , Ratones Endogámicos C57BL , Obesidad , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Células Madre Hematopoyéticas/metabolismo , Interleucina-1beta/metabolismo , Ratones , Obesidad/metabolismo , Obesidad/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Dieta Alta en Grasa/efectos adversos , Masculino , Sistema de Señalización de MAP Quinasas , Inflamación/metabolismo , Inflamación/patología , Transducción de Señal , Diferenciación CelularRESUMEN
The bone marrow (BM) niches are the complex microenvironments that surround cells, providing various external stimuli to regulate a range of haematopoietic stem cell (HSC) behaviours. Recently, it has been proposed that the fate decision of HSCs is often correlated with significantly altered biophysical signals of BM niches. To thoroughly elucidate the effect of mechanical microenvironments on cell fates, we constructed 2D and 3D cell culture hydrogels using polyacrylamide to replicate the mechanical properties of heterogeneous sub-niches, including the inherent rigidity of marrow adipose tissue (2 kPa), perivascular tissue (8 kPa) and endosteum region (35 kPa) in BM. Our observations suggest that HSCs can respond to the mechanical heterogeneity of the BM microenvironment, exhibiting diversity in cell mechanics, haematopoietic pool maintenance and differentiated lineages. Hydrogels with higher stiffness promote the preservation of long-term repopulating HSCs (LT-HSCs), while those with lower stiffness support multi-potent progenitors (MPPs) viability in vitro. Furthermore, we established a comprehensive transcriptional profile of haematopoietic subpopulations to reflect the multipotency of haematopoietic stem and progenitor cells (HSPCs) that are modulated by niche-like stiffness. Our findings demonstrate that HSPCs exhibit completely distinct downstream differentiated preferences within hydrogel systems of varying stiffness. This highlights the crucial role of tissue-specific mechanical properties in HSC lineage decisions, which may provide innovative solutions to clinical challenges.
RESUMEN
Following the publication of the above article, a concerned reader drew to the Editor's attention that certain of the Transwell invasion assay data shown in Fig. 7B on p. 451 were strikingly similar to data that had appeared in Fig. 3D in a previously published paper written by different authors at a different research institute, which had been received at the journal Cancer Letters at around the same time, and which has subsequently been retracted [Gu J, Wang Y, Wang X, Zhou D, Shao C, Zhou M and He Z: Downregulation of lncRNA GAS5 confers tamoxifen resistance by activating miR222 in breast cancer. Cancer Lett 434: 110, 2018]. In addition, there were potentially anomalous features associated with the western blot and cell cycle data in this paper. In view of the fact that certain of the data in the above article were also submitted to a different journal within the space of a few days, the Editor of International Journal of Oncology has decided that this paper should be retracted from the publication. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Oncology 54: 443454, 2019; DOI: 10.3892/ijo.2018.4647].
RESUMEN
Hematopoietic stem cells (HSCs) undergo self-renewal and differentiation in the bone marrow, which is tightly regulated by cues from the microenvironment. The gut microbiota, a dynamic community residing on the mucosal surface of vertebrates, plays a crucial role in maintaining host health. Recent evidence suggests that the gut microbiota influences HSCs differentiation by modulating the bone marrow microenvironment through microbial products. This paper comprehensively analyzes the impact of the gut microbiota on hematopoiesis and its effect on HSCs fate and differentiation by modifying the bone marrow microenvironment, including mechanical properties, inflammatory signals, bone marrow stromal cells, and metabolites. Furthermore, we discuss the involvement of the gut microbiota in the development of hematologic malignancies, such as leukemia, multiple myeloma, and lymphoma.
Asunto(s)
Médula Ósea , Microbioma Gastrointestinal , Animales , Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular , HematopoyesisRESUMEN
Immunotherapy is restricted by a complex tumor immunosuppressive microenvironment (TIM) and low drug delivery efficiency. Herein, a multifunctional adjuvant micelle nanosystem (PPD/MPC) integrated with broken barriers and re-education of three classes of immune-tolerant cells is constructed for cancer immunotherapy. The nanosystem significantly conquers the penetration barrier via the weakly acidic tumor microenvironment-responsive size reduction and charge reversal strategy. The detached core micelle MPC could effectively be internalized by tumor-associated macrophages (TAMs), tumor-infiltrating dendritic cells (TIDCs), and myeloid-derived suppressor cells (MDSCs) via mannose-mediated targeting endocytosis and electrostatic adsorption pathways, promoting the re-education of immunosuppressive cells for allowing them to reverse from pro-tumor to antitumor phenotypes by activating TLR4/9 pathways. This process in turn leads to the remodeling of TIM. In vitro and in vivo studies collectively indicate that the adjuvant micelle-based nanosystem not only relieves the intricate immune tolerance and remodels TIM via reprogramming the three types of immunosuppressive cells and regulating the secretion of relevant cytokines/immunity factors but also strengthens immune response and evokes immune memory, consequently suppressing the tumor growth and metastasis.
Asunto(s)
Micelas , Neoplasias , Humanos , Inmunoterapia , Inmunosupresores/farmacología , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/uso terapéutico , Neoplasias/terapia , Microambiente Tumoral , Línea Celular TumoralRESUMEN
Hematopoietic stem cells (HSCs) with the ability to self-renew and differentiate are responsible for maintaining the supply of all types of blood cells. The complex and delicate microenvironment surrounding HSCs is called the HSC niche and can provide physical, chemical, and biological stimuli to regulate the survival, maintenance, proliferation, and differentiation of HSCs. Currently, the exploration of the biophysical regulation of HSCs remains in its infancy. There is evidence that HSCs are susceptible to biophysical stimuli, suggesting that the construction of engineered niche biophysical microenvironments is a promising way to regulate the fate of HSCs in vitro and ultimately contribute to clinical applications. In this review, we introduced the spatiotemporal heterogeneous biophysical microenvironment during HSC development, homeostasis, and malignancy. Furthermore, we illustrated how these biophysical cues contribute to HSC behaviors, as well as the possible mechanotransduction mechanisms from the extracellular microenvironment into cells. Comprehending the important functions of these biophysical regulatory factors will provide novel approaches to resolve clinical problems.
Asunto(s)
Células Madre Hematopoyéticas , Mecanotransducción Celular , Adulto , Humanos , Embrión de Mamíferos , Diferenciación Celular , HomeostasisRESUMEN
Tumor-dependent glucose and glutamine metabolisms are essential for maintaining survival, while the accordingly metabolic suppressive therapy is limited by the compensatory metabolism and inefficient delivery efficiency. Herein, a functional metal-organic framework (MOF)-based nanosystem composed of the weakly acidic tumor microenvironment-activated detachable shell and reactive oxygen species (ROS)-responsive disassembled MOF nanoreactor core is designed to co-load glycolysis and glutamine metabolism inhibitors glucose oxidase (GOD) and bis-2-(5-phenylacetmido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES) for tumor dual-starvation therapy. The nanosystem excitingly improves tumor penetration and cellular uptake efficiency via integrating the pH-responsive size reduction and charge reversal and ROS-sensitive MOF disintegration and drug release strategy. Furthermore, the degradation of MOF and cargoes release can be self-amplified via additional self-generation H2 O2 mediated by GOD. Last, the released GOD and BPTES collaboratively cut off the energy supply of tumors and induce significant mitochondrial damage and cell cycle arrest via simultaneous restriction of glycolysis and compensatory glutamine metabolism pathways, consequently realizing the remarkable triple negative breast cancer killing effect in vivo with good biosafety via the dual starvation therapy.
Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Humanos , Estructuras Metalorgánicas/farmacología , Glutamina/metabolismo , Glutamina/uso terapéutico , Especies Reactivas de Oxígeno , Glucosa , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Nanotecnología , Glucosa Oxidasa/metabolismo , Línea Celular Tumoral , Microambiente TumoralRESUMEN
Tumor microenvironment is characterized by the high concentration of reactive oxygen species (ROS), which is an effective key used to open the Pandora's Box against cancer. Herein, a tumor-targeted nanosystem HFNP@GOX@PFC composed of ROS-cleaved Fe-based metal-organic framework, hyaluronic acid (HA), glucose oxidase (GOX) and perfluorohexane (PFC) has been developed for tumor cascade amplified starvation and chemodynamic therapy (CDT). In response to the high concentration of hydrogen peroxide (H2O2) intratumorally, HFNP@GOX@PFC endocytosed by tumor cells can specially be disassembled and release GOX, PFC and Fe2+, which can collectively starve tumor and self-produce additional H2O2 via competitively glucose catalyzing, supply oxygen to continuous support GOX-mediated starvation therapy, initiate CDT and cascade amplify oxidative stress via Fe2+-mediated Fenton reaction, leading to the serious tumor damage with activated p53 signal pathway. Moreover, HFNP@GOX@PFC also significantly initiates antitumor immune response via re-educating tumor-associated macrophages (TAMs) by activating NF-κB and MAPK signal pathways. In vitro and in vivo results collectively demonstrate that nanosystem not only continuously initiates starvation therapy, but also pronouncedly cascade-amplify CDT and polarize TAMs, consequently efficiently inhibiting tumor growth with good biosafety. The functional nanosystem combined the cascade amplification of starvation and CDT provides a new nanoplatform for tumor therapy.
Asunto(s)
Inanición , Macrófagos Asociados a Tumores , Humanos , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Endocitosis , Glucosa , Glucosa OxidasaRESUMEN
The starvation therapy mediated by the lonidamine (LND) was limited by the low drug delivery efficiency, off-target effect and compensative glutamine metabolism. Herein, a hyaluronic acid (HA)-modified reduction-responsive micellar nanosystem co-loaded with glycolysis and glutamine metabolism inhibitor (LND and bis-2-(5-phenylacetmido-1,2,4-thiadiazol-2-yl)ethyl sulfide, BPTES) was constructed for tumor-targeted dual-starvation therapy. The in vitro and in vivo results collectively suggested that the fabricated nanosystem could effectively endocytosed by tumor cells via HA receptor-ligand recognition, and rapidly release starvation-inducers LND and BPTES in response to the GSH-rich intratumoral cytoplasm. Furthermore, the released LND and BPTES were capable of inducing glycolysis and glutamine metabolism suppression, and accompanied by significant mitochondrial damage, cell cycle arrest and tumor cells apoptosis, eventually devoting to the blockade of the energy and substance supply and tumor killing with high efficiency. In summary, HPPPH@L@B nanosystem significantly inhibited the compensatory glycolysis and glutamine metabolism via the dual-starvation therapy strategy, blocked the indispensable energy and substance supply of tumors, consequently leading to the desired tumor starvation and effective tumor killing with reliable biosafety.
RESUMEN
Inhibited immune response and low levels of delivery restrict starvation cancer therapy efficacy. Here, we report on the co-delivery of glucose oxidase (GOx) and indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyltryptophan using a metal-organic framework (MOF)-based nanoreactor, showing an amplified release for tumor starvation/oxidation immunotherapy. The nanosystem significantly overcomes the biobarriers associated with tumor penetration and improves the cargo bioavailability owing to the weakly acidic tumor microenvironment-activated charge reversal and size reduction strategy. The nanosystem rapidly disassembles and releases cargoes in response to the intracellular reactive oxygen species (ROS). GOx competitively consumes glucose and generates ROS, further inducing the self-amplifiable MOF disassembly and drug release. The starvation/oxidation combined IDO-blockade immunotherapy not only strengthens the immune response and stimulates the immune memory through the GOx-activated tumor starvation and recruitment of effector T cells, but also effectively relieves the immune tolerance by IDO blocking, remarkably inhibiting the tumor growth and metastasis in vivo.
Asunto(s)
Inmunoterapia , Indolamina-Pirrol 2,3,-Dioxigenasa , Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Línea Celular Tumoral , Glucosa Oxidasa/uso terapéutico , Humanos , Inmunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Estructuras Metalorgánicas/uso terapéutico , Nanotecnología , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno , Microambiente TumoralRESUMEN
As the importance of cell heterogeneity has begun to be emphasized, single-cell sequencing approaches are rapidly adopted to study cell heterogeneity and cellular evolutionary relationships of various cells, including stem cell populations. The hematopoietic stem and progenitor cell (HSPC) compartment contains HSC hematopoietic stem cells (HSCs) and distinct hematopoietic cells with different abilities to self-renew. These cells perform their own functions to maintain different hematopoietic lineages. Undeniably, single-cell sequencing approaches, including single-cell RNA sequencing (scRNA-seq) technologies, empower more opportunities to study the heterogeneity of normal and pathological HSCs. In this review, we discuss how these scRNA-seq technologies contribute to tracing origin and lineage commitment of HSCs, profiling the bone marrow microenvironment and providing high-resolution dissection of malignant hematopoiesis, leading to exciting new findings in HSC biology.
Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Médula Ósea , Diferenciación Celular/fisiología , Hematopoyesis/genética , Análisis de Secuencia de ARNRESUMEN
Beef and mutton production has been aided by breeding to integrate allelic diversity for myostatin (MSTN), but a lack of diversity in the MSTN germplasm has limited similar advances in pig farming. Moreover, insurmountable challenges with congenital lameness and a dearth of data about the impacts of feed conversion, reproduction, and meat quality in MSTN-edited pigs have also currently blocked progress. Here, in a largest-to-date evaluation of multiple MSTN-edited pig populations, we demonstrated a practical alternative edit-site-based solution that overcomes the major production obstacle of hindlimb weakness. We also provide long-term and multidomain datasets for multiple breeds that illustrate how MSTN-editing can sustainably increase the yields of breed-specific lean meat and the levels of desirable lipids without deleteriously affecting feed-conversion rates or litter size. Apart from establishing a new benchmark for the data scale and quality of genome-edited animal production, our study specifically illustrates how gene-editing site selection profoundly impacts the phenotypic outcomes in diverse genetic backgrounds.