Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Med Genomics ; 17(1): 97, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649961

RESUMEN

BACKGROUND: The treatment of lung adenocarcinoma is difficult due to the limited therapeutic options. Cancer-associated fibroblasts play an important role in the development of cancers. This study aimed to identify a promising molecular target associated with cancer-associated fibroblasts for the treatment of lung adenocarcinoma. METHODS: The Cancer Genome Atlas lung adenocarcinoma dataset was used to screen hub genes associated with cancer-associated fibroblasts via the EPIC algorithm and Weighted Gene Co-expression Network Analysis. Multiple databases were used together with our data to verify the differential expression and survival of COL11A1. Functional enrichment analysis and the single-cell TISCH database were used to elucidate the mechanisms underlying COL11A1 expression. The correlation between COL11A1 and immune checkpoint genes in human cancers was also evaluated. RESULTS: Using the EPIC algorithm and Weighted Gene Co-expression Network Analysis, 13 hub genes associated with cancer-associated fibroblasts in lung adenocarcinoma were screened. Using the GEPIA database, Kaplan-Meier Plotter database, GSE72094, GSE75037, GSE32863, and our immunohistochemistry experiment data, we confirmed that COL11A1 overexpresses in lung adenocarcinoma and that high expression of COL11A1 is associated with a poor prognosis. COL11A1 has a genetic alteration frequency of 22% in patients with lung adenocarcinoma. COL11A1 is involved in the extracellular matrix activities of lung adenocarcinoma. Using the TISCH database, we found that COL11A1 is mainly expressed by cancer-associated fibroblasts in the tumor microenvironment rather than by lung adenocarcinoma cells. Finally, we found that COL11A1 is positively correlated with HAVCR2(TIM3), CD274 (PD-L1), CTLA4, and LAG3 in lung adenocarcinoma. CONCLUSION: COL11A1 may be expressed and secreted by cancer-associated fibroblasts, and a high expression of COL11A1 may result in T cell exhaustion in the tumor microenvironment of lung adenocarcinoma. COL11A1 may serve as an attractive biomarker to provide new insights into cancer therapeutics.


Asunto(s)
Adenocarcinoma del Pulmón , Fibroblastos Asociados al Cáncer , Colágeno Tipo XI , Neoplasias Pulmonares , Humanos , Colágeno Tipo XI/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Pronóstico , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Bases de Datos Genéticas , Redes Reguladoras de Genes , Microambiente Tumoral/genética , Perfilación de la Expresión Génica
2.
Front Pharmacol ; 14: 1238579, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38269283

RESUMEN

Background: The synergistic effects of antiangiogenic inhibitor bevacizumab and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) therapy were encouraging in patients with EGFR-mutant advanced NSCLC, though some controversy remains. The specific subgroup of patients who might benefit most from the EGFR-TKI and bevacizumab combination therapy is yet to be determined. Methods: Randomized clinical trials (RCTs) that had compared the clinical efficacy of EGFR-TKI and bevacizumab combination therapy with EGFR-TKI monotherapy in treating EGFR-mutant advanced NSCLC patients published before 23 December 2022 were searched in the Cochrane, PubMed and Embase. We performed a meta-analysis for the overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and treatment-related adverse events with a grade equal or more than 3 (grade≥3 TRAEs). Subgroup analyses of PFS and OS stratified by clinical characteristics and treatment were conducted. Results: We included 10 RCTs involving 1520 patients. Compared with EGFR-TKI monotherapy, addition of bevacizumab to EGFR-TKI resulted in a significantly higher PFS (hazard ratio (HR) = 0.74, 95% confidence interval (95% CI): 0.62-0.87)) and ORR (risk ratio (RR) = 1.07, 95% CI: 1.01-1.13). However, no significant difference in OS (HR = 0.96, 95% CI: 0.83-1.12) was noticed. Patients with EGFR-mutant advanced NSCLC receiving combination therapy showed PFS improvement regardless of gender (male or female), Eastern Cooperative Oncology Group performance status (0 or 1), baseline central nervous system (CNS) metastasis (presence or absence) and EGFR mutation type (19del or 21L858R). Subgroup analyses showed that, with the treatment of bevacizumab and EGFR-TKI, patients who ever smoked achieved significantly better OS and PFS benefits (HR = 0.68, 95% CI: 0.48-0.95; HR = 0.59, 95% CI: 0.46-0.74, respectively), and those aged <75 years and the Asian population had significantly prolonged PFS (HR = 0.69, 95% CI: 0.52-0.91; HR = 0.71, 95% CI: 0.58-0.87; respectively). The superiority of EGFR-TKI and bevacizumab combination therapy against EGFR-TKI monotherapy in improving PFS was more significant in the erlotinib regimen subgroup. The risk of grade≥3 TRAEs was remarkably higher in the combination therapy group (HR = 1.73, 95% CI: 1.39-2.16). Conclusion: Addition of bevacizumab to EGFR-TKI therapy provided significantly better PFS and ORR for EGFR-mutant advanced NSCLC patients, though with higher risk of grade≥3 TRAEs. Patients who ever smoked, aged <75 years, and Asian population might benefit more from the combination regimen. Systematic Review Registration: This systematic review and meta-analysis was registered in the PROSPERO database (CRD42023401926).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...