Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 265: 116068, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141284

RESUMEN

Thirteen new sirenin derivatives named eupenicisirenins C-O (1-13), along with a biosynthetically related known one (14), were isolated from the mangrove sediment-derived fungus Penicillium sp. SCSIO 41410. The structures, which possessed a rare cyclopropane moiety, were confirmed by extensive analyses of the spectroscopic data, quantum chemical calculations, and X-ray diffraction. Among them, eupenicisirenin C (1) exhibited the strongest NF-κB inhibitory activities, as well as suppressing effects on cGAS-STING pathway. Moreover, 1 showed the significant inhibitory effect on RANKL-induced osteoclast differentiation in bone marrow macrophages cells, and also displayed the therapeutic potential on prednisolone-induced zebrafish osteoporosis. Transcriptome analysis and the following verification tests suggested that its anti-osteoporotic mechanism is related to the extracellular matrix receptor interaction-related pathways. This study provided a promising marine-derived anti-osteoporotic agent for the treatment of skeletal disease.


Asunto(s)
Osteoporosis , Penicillium , Animales , Hongos/metabolismo , Macrófagos , FN-kappa B/metabolismo , Osteoporosis/tratamiento farmacológico , Penicillium/química , Pez Cebra/metabolismo , Compuestos Bicíclicos con Puentes/química
2.
Eur J Pharmacol ; 956: 175950, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37544423

RESUMEN

Parkinson's disease (PD) is characterized by both motor and non-motor symptoms, including hypokinesia, postural instability, dopaminergic (DA) neurons loss, and α-synuclein (α-syn) accumulation. A growing number of patients show negative responses towards the current therapies. Thus, preventative or disease-modifying treatment agents are worth to further research. In recent years, compounds extracted from natural sources become promising candidates to treat PD. Chlorogenic acid (CGA) is a phenolic compound appearing in coffee, honeysuckle, and eucommia that showed their potential as antioxidants and neuroprotectors. In this study, we investigated the anti-PD activity of CGA by testing its effect on 1-methyl-4-phenyl-1-1,2,3,6-tetrahydropyridine (MPTP) zebrafish model of PD. It was shown that CGA relieved MPTP-induced PD-like symptoms including DA neurons and blood vessel loss, locomotion reduction, and apoptosis events in brain. Moreover, CGA modulated the expression of PD- and autophagy-related genes (α-syn, lc3b, p62, atg5, atg7, and ulk1b), showing its ability to promote the autophagy which was interrupted in the PD pathology. The unblocked effect of CGA on autophagy was further verified in 6-hydroxydopamine (6-OHDA)-modeled SHSY5Y cells. Our findings indicated that CGA might relieve PD by boosting the autophagy in neuronal cells that makes CGA a potential candidate for anti-PD treatment.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Pez Cebra , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Autofagia , Neuronas Dopaminérgicas , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...