Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood ; 141(9): 1070-1086, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36356302

RESUMEN

Intestinal epithelial cells (IECs) are implicated in the propagation of T-cell-mediated inflammatory diseases, including graft-versus-host disease (GVHD), but the underlying mechanism remains poorly defined. Here, we report that IECs require receptor-interacting protein kinase-3 (RIPK3) to drive both gastrointestinal (GI) tract and systemic GVHD after allogeneic hematopoietic stem cell transplantation. Selectively inhibiting RIPK3 in IECs markedly reduces GVHD in murine intestine and liver. IEC RIPK3 cooperates with RIPK1 to trigger mixed lineage kinase domain-like protein-independent production of T-cell-recruiting chemokines and major histocompatibility complex (MHC) class II molecules, which amplify and sustain alloreactive T-cell responses. Alloreactive T-cell-produced interferon gamma enhances this RIPK1/RIPK3 action in IECs through a JAK/STAT1-dependent mechanism, creating a feed-forward inflammatory cascade. RIPK1/RIPK3 forms a complex with JAK1 to promote STAT1 activation in IECs. The RIPK1/RIPK3-mediated inflammatory cascade of alloreactive T-cell responses results in intestinal tissue damage, converting the local inflammation into a systemic syndrome. Human patients with severe GVHD showed highly activated RIPK1 in the colon epithelium. Finally, we discover a selective and potent RIPK1 inhibitor (Zharp1-211) that significantly reduces JAK/STAT1-mediated expression of chemokines and MHC class II molecules in IECs, restores intestinal homeostasis, and arrests GVHD without compromising the graft-versus-leukemia (GVL) effect. Thus, targeting RIPK1/RIPK3 in IECs represents an effective nonimmunosuppressive strategy for GVHD treatment and potentially for other diseases involving GI tract inflammation.


Asunto(s)
Enfermedad Injerto contra Huésped , Intestinos , Ratones , Humanos , Animales , Mucosa Intestinal/metabolismo , Inflamación/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/metabolismo , Homeostasis , Proteína Serina-Treonina Quinasas de Interacción con Receptores
2.
Am J Transl Res ; 12(10): 6965-6972, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194086

RESUMEN

CCAAT-enhancer-binding protein α (CEBPA) gene carrying two mutations (CEBPA double mutations) is known to promote familial acute myeloid leukemia (AML). However, the underlying mechanism by which CEBPA double mutations promote AML remains poorly understood. Here we report that a family with three generations suffering from familial AML carries novel double mutations of CEBPA. Seven bases of GCGCGGG were inserted into the N-terminal c.113-114 of CEBPA as germline mutations and three bases of AAG were inserted into the C-terminal c.939-940 as a somatic mutation. To test the functional impact of this double mutation, we constructed plasmid encoding the double mutants of CEBPA and transfected it into the myeloid precursor 32Dcl3 cells. Lentiviral induced overexpression of CEBPA with these double mutations inhibited myeloid differentiation of these 32Dcl3 cells, and led to approximately 4-fold fewer frequency of CD11b expression. Our results confirm that the double mutations of CEBPA at both N- and C-terminals are potentially to induce leukemogenesis of AML.

3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(1): 7-13, 2019 Feb.
Artículo en Chino | MEDLINE | ID: mdl-30738440

RESUMEN

OBJECTIVE: To investigate the mechanism of Paris forrestii (Takht.) H. Li (PCT3)-suppressing the proliferation of HL-60, K562, KG-1 and HT-93 cells. METHODS: cute myeloid leukemia cell lines such as HL-60, K562, KG-1 and HT-93 were treated with Paris forrestii (Takht.) H. Li (PCT3) for 24, 48, and 72 h, and MTT assay was employed to determine the cells proliferation. Meanwhile, the apoptosis of K562, HL-60, KG-1 and HT-93 cells were detected by flow cytometry after PCT3 (Control, 4 µg/ml, 8 µg/ml) treated for 24 h and the Western blot was performed to detect the expression of PARP,Caspase-3, MCL-1, BAX, BCL-2, P53, and P27. GAPDH was used as an internal loading control. RESULTS: MTT assay showed that Paris forrestii (Takht.) H. Li (PCT3) significantly inhibited the proliferation of HL-60, K562, KG-1 and HT-93 cells in concentration and time-dependent manners. Compared with the control group, the leukemia cell viabilities were significantly suppressed (r =0.9436; r =0.8623; r =0.9922; r =0.8918). Paris forrestii (Takht.) H. Li (PCT3) induced apoptosis of leukemia cells in a concentration dependent manner, compared with the control group (P<0.05 or P<0.01). Western blot revealed that PARP, a major enzyme in DNA damage repair, and Caspase-3 another one of the major executive apoptotic enzymes were cleaved in cell lines examined, and this cleavage was concentration dependent. Anti-apoptotic proteins such as MCL-1 and BCL-2 were down regulated by Paris forrestii (Takht.) H. Li (PCT3), and Pro-apoptotic protein BAX was upregulated. And the protein of tumor suppressor gene P53 and its downstream signaling protein P27 increased. CONCLUSION: Paris forrestii (Takht.) H. Li (PCT3) can inhibit the proliferation of leukemia cells by activating endogenous apoptosis pathway, and provide a potential new drug selection for clinical treatment of AML leukemia.


Asunto(s)
Leucemia Mieloide Aguda , Apoptosis , Caspasa 3 , Línea Celular Tumoral , Proliferación Celular , Humanos , Melanthiaceae , Proteínas Proto-Oncogénicas c-bcl-2
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(1): 246-252, 2019 Feb.
Artículo en Chino | MEDLINE | ID: mdl-30738478

RESUMEN

OBJECTIVE: To investigate the gene mutation of patients with WAS gene defect and its correlation with clinical manifestations. METHODS: Thirty-one patients consulted in Children's Hospital of Soochow University from January 2013 to February 2018 were enrolled in this study. The hot pot mutations of WAS gene in 31 patients were detected and related clinical phenotypes were analyzed retrospectively. RESULTS: All patients were male. The median onset age was 1 month (range, 0-83 months). Nine mutants were reported as novel mutations among 25 mutants detected in 31 patients, including c.1234_1235dupCC, c.1093-1097delG, c.28-30dupC, c.436G>T, c.273 + 10_273 + 11dupCC, c.995_996insG, c.1010T>A, c.332_333delCC and c.683C>T mutations. There were 25 cases of classic WAS which mutations included missense mutation, deletion mutation, insertion mutation, splicing mutation and nonsense mutation, 2 cases of X-linked thrombocytopenia (XLT) were induced by missense mutation, 1 case of intermittent X-linked thrombocytopenia (IXLT) was induced by splicing mutation, 2 cases of X-linked pancytopenia were induced by missense mutation. Intravenous immunoglobulin (IVIG) and glucocorticoid therapy in IXLT patient was effective, and remission could be sustained, platelets could be increased in the short-term in treated XLT patients, but only a small part of classic WAS patients(8.0%) showed transient response to it, the IVIG and glucocorticoid therapy did not improve the status of platelet in XLP patients. Immune laboratory examination showed that CD3+ was decreased in 60.0% patients, CD19+ was decreased in 12.0% patients, and CD56+CD16+ in 4 patients was decreased, accounting for 16.0%. Out of 24 patients, 22 patients were alive after treated with hematopoietic stem cell transplantation (HSCT), 4 patients who were not given HSCT died of brain bleeding and severe infection, 1 patient diagnosed as IXLT got remission and survived. CONCLUSION: WAS gene defect is an important basis for the diagnosis of WAS and related diseases. IVIG plus glucocorticoid therapy is less effective for fewer patients, the HSCT is an effective treatment for WAS.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Trombocitopenia , Proteína del Síndrome de Wiskott-Aldrich/genética , Humanos , Masculino , Mutación , Fenotipo , Estudios Retrospectivos
5.
Front Pharmacol ; 9: 673, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997504

RESUMEN

Saponins are amphipathic glycosides found in traditional Chinese medicines. In the present study, we isolated a panel of saponins from Paris forrestii (Takht.) H. Li, a unique plant found in Tibet and Yunnan provinces, China. By examining their activities in suppressing acute myeloid leukemia (AML) cell proliferation, total saponins from Paris forrestii (TSPf) displayed more potent activity than individual ones. TSPf induced more than 40% AML cell apoptosis and decreased the viability of all leukemia cell lines. TSPf-induced apoptosis was confirmed by both Annexin V staining and caspase-3 activation. In line with these findings, TSPf downregulated pro-survival proteins Mcl-1, Bcl-xL, and Bcl-2 but upregulated the expression of tumor suppressor proteins p53, p27, Bax, and Beclin 1. The AKT/mTOR signaling pathway is frequently overactivated in various AML cells, and TSPf was found to suppress the activation of both AKT and mTOR, but had no effects on their total protein expression. This was further confirmed by the inactivation of 4EBP-1 and p70S6K, two typical downstream signal molecules in the AKT/mTOR pathway. Moreover, TSPf-inactivated AKT/mTOR signaling was found to be associated with downregulated RNF6, a recently identified oncogene in AML. RNF6 activated AKT/mTOR, and consistently, knockdown of RNF6 led to inactivation of the AKT/mTOR pathway. Furthermore, TSPf suppressed the growth of AML xenografts in nude mice models. Oral administration of TSPf almost fully suppressed tumor growth without gross toxicity. Consistent with the findings in cultured cell lines, TSPf also downregulated RNF6 expression along with inactivated AKT/mTOR signaling in tumor tissues. This study thus demonstrated that TSPf displays potent anti-AML activity by suppressing the RNF6/AKT/mTOR pathway. Given its low toxicity, TSPf could be developed for the treatment of AML.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...