Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Med ; 30(1): 63, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760678

RESUMEN

BACKGROUND: Diabetic wounds are one of the long-term complications of diabetes, with a disordered microenvironment, diabetic wounds can easily develop into chronic non-healing wounds, which can impose a significant burden on healthcare. In diabetic condition, senescent cells accumulate in the wound area and suppress the wound healing process. AMPK, as a molecule related to metabolism, has a close relationship with aging and diabetes. The purpose of this study was to investigate the effects of AMPK activation on wound healing and explore the underlying mechanisms. METHODS: AMPK activator A769662 was topically applied in wound models of diabetic mice. Alterations in the wound site were observed and analyzed by immunohistochemistry. The markers related to autophagy and ferritinophagy were analyzed by western blotting and immunofluorescence staining. The role of AMPK activation and ferritinophagy were also analyzed by western blotting. RESULTS: Our results show that AMPK activation improved diabetic wound healing and reduced the accumulation of senescent cells. Intriguingly, we found that AMPK activation-induced ferroptosis is autophagy-dependent. We detected that the level of ferritin had deceased and NCOA4 was markedly increased after AMPK activation treatment. We further investigated that NCOA4-mediated ferritinophagy was involved in ferroptosis triggered by AMPK activation. Most importantly, AMPK activation can reverse the ferroptosis-insensitive of senescent fibroblast cells in diabetic mice wound area and promote wound healing. CONCLUSIONS: These results suggest that activating AMPK can promote diabetic wound healing by reversing the ferroptosis-insensitive of senescent fibroblast cells. AMPK may serve as a regulatory factor in senescent cells in the diabetic wound area, therefore AMPK activation can become a promising therapeutic method for diabetic non-healing wounds.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Senescencia Celular , Diabetes Mellitus Experimental , Ferritinas , Coactivadores de Receptor Nuclear , Cicatrización de Heridas , Animales , Ratones , Ferritinas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Masculino , Ferroptosis , Humanos , Modelos Animales de Enfermedad , Activación Enzimática
2.
ACS Omega ; 9(18): 20425-20436, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38737053

RESUMEN

The prevalence of chronic wounds (CW) continues to grow. A thorough knowledge of the mechanism of CW formation remains elusive due to a lack of relevant studies. Furthermore, most previous studies concentrated on diabetic ulcers with relatively few investigations on other types. We performed this multiomics study to investigate the proteomic and metabolomic changes in wound and surrounding tissue from a cohort containing 13 patients with nondiabetic CW. Differentially expressed proteins (DEPs) and metabolites (DEMs) were filtered out and analyzed through multiomic profiling. The DEPs were further confirmed with the use of parallel reaction monitoring. Compared with the surrounding tissue, there were 82 proteins and 214 metabolites altered significantly in wound tissue. The DEPs were mainly enriched in focal adhesion (FA), extracellular matrix-receptor interaction (ERI), and the PI3K-Akt (PA) signaling pathway. Moreover, the DEMs were significantly enriched in amino sugar and nucleotide sugar metabolism and biosynthesis of nucleotide sugar pathways. In correlation analysis, we discovered that the PA signaling pathway, as well as its upstream and downstream pathways, coenriched some DEPs and DEMs. Additionally, we found that FBLN1, FBLN5, and EFEMP1 (FBLN3) proteins dramatically elevated in wound tissue and connected with the above signaling pathways. This multiomics study found that changes in FA, ERI, and PA signaling pathways had an impact on the cellular activities and functions of wound tissue cells. Additionally, increased expression of those proteins in wound tissue may inhibit vascular and skin cell proliferation and degrade the extracellular matrix, which may be one of the causes of CW formation.

3.
Front Plant Sci ; 14: 1294086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078093

RESUMEN

Citrus, one of the most widely cultivated fruit crops in the world, relies on arbuscular mycorrhizal fungi (AMF) to absorb nutrients and water from soil. However, the molecular mechanism of AM symbiosis (AMS) in citrus in general have largely been understudied. Here, using a TMT labeling proteomic approach, we identified 365 differentially expressed proteins (DEPs) in roots of Poncirus trifoliata (a common citrus rootstock) upon Rhizophagus irregularis colonization as compared with uninoculated roots, of which 287 were up-regulated and 78 were down-regulated. GO analysis revealed that the DEPs were mainly involved in biological processes such as negative regulation of endopeptidase inhibitor activity, negative regulation of endopeptidase, one-carbon metabolic process and carbohydrate metabolic process. KEGG enrichment analysis indicated that the DEPs were mainly involved in regulating metabolic pathways such as fatty acid biosynthesis, phenylpropanoid biosynthesis and carbon metabolism. Furthermore, 194 of the 365 DEPs were found to be associated with AMS-responsive genes by association analysis with our previous transcriptomes data, which highlighted the important roles of these proteins in AMS. One of the 194 DEPs, neutral ceramidase (PtNCER), was further chosen for function analysis via RNAi interfering its homologous gene MtNCER in a mycorrhizal model plant Medicago truncatula, which confirmed a positive role of NCER in AM establishment. Our results provided basic data and key candidate genes for genetic improvement of efficient nutrient uptake through AM establishment in citrus and other crops.

4.
Acta Biomater ; 172: 407-422, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37848101

RESUMEN

Evidence indicates that prolonged low-level inflammation and elevated-glucose-induced oxidative stress in diabetic wounds can accelerate senescence. The accumulation of senescent cells, in turn, inhibits cellular proliferation and migration, aggravating the inflammatory response and oxidative stress, ultimately impeding wound healing. In this study, we exploited the heightened lysosomal ß-galactosidase activity detected in senescent cells to develop an innovative drug delivery system by encapsulating Fe3O4 with galactose-modified poly (lactic-co-glycolic acid) (PLGA) (F@GP). We found that F@GP can selectively release Fe3O4 into senescent cells, inducing ferroptosis via the Fenton reaction in the presence of elevated intracellular H2O2 levels. This showed that F@GP administration can serve as a chemodynamic therapy to eliminate senescent cells and promote cell proliferation. Furthermore, the F@GP drug delivery system gradually released iron ions into the diabetic wound tissues, enhancing the attenuation of cellular senescence, stimulating cell proliferation, promoting re-epithelialization, and accelerating the healing of diabetic wounds in mice. Our groundbreaking approach unveiled the specific targeting of senescence by F@GP, demonstrating its profound effect on promoting the healing of diabetic wounds. This discovery underscores the therapeutic potential of F@GP in effectively addressing challenging cases of wound repair. STATEMENT OF SIGNIFICANCE: The development of galactose-modified PLGA nanoparticles loaded with Fe3O4 (F@GP) represents a significant therapeutic approach for the treatment of diabetic wounds. These nanoparticles exhibit remarkable potential in selectively targeting senescent cells, which accumulate in diabetic wound tissue, through an enzyme-responsive mechanism. By employing chemodynamic therapy, F@GP nanoparticles effectively eliminate senescent cells by releasing iron ions that mediate the Fenton reaction. This targeted approach holds great promise for promoting diabetic wound healing by selectively eliminating senescent cells, which play a crucial role in impairing the wound healing process. The innovative utilization of F@GP nanoparticles as a therapeutic intervention offers a novel and potentially transformative strategy for addressing the challenges associated with diabetic wound healing.


Asunto(s)
Diabetes Mellitus , Nanosferas , Ratones , Animales , Peróxido de Hidrógeno/farmacología , Galactosa , Cicatrización de Heridas , Senescencia Celular , Hierro/farmacología
5.
Front Genet ; 14: 1162787, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533433

RESUMEN

Lung adenocarcinoma, which is the second most prevalent cancer in the world, has a poor prognosis and a low 5-year survival rate. The MS4A protein family is crucial to disease development and progression, particularly for cancers, allergies, metabolic disorders, autoimmune diseases, infections, and neurodegenerative disorders. However, its involvement in lung adenocarcinoma remains unclear. In this study, we found that 11 MS4A family genes were upregulated or downregulated in lung adenocarcinoma. Furthermore, we described the genetic variation landscape of the MS4A family in lung adenocarcinoma. Notably, through functional enrichment analysis, we discovered that the MS4A family is involved in the immune response regulatory signaling pathway and the immune response regulatory cell surface receptor signaling pathway. According to the Kaplan-Meier curve, patients with lung adenocarcinoma having poor expression of MS4A2, MS4A7, MS4A14, and MS4A15 had a low overall survival rate. These four prognostic genes are substantially associated with immune-infiltrating cells, and a prognosis model incorporating them may more accurately predict the overall survival rate of patients with lung adenocarcinoma than current models. The findings of this study may offer creative suggestions and recommendations for the identification and management of lung adenocarcinoma.

7.
Pharmaceutics ; 15(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37514015

RESUMEN

Nanofiber scaffolds have emerged as a revolutionary drug delivery platform for promoting wound healing, due to their unique properties, including high surface area, interconnected porosity, excellent breathability, and moisture absorption, as well as their spatial structure which mimics the extracellular matrix. However, the use of nanofibers to achieve controlled drug loading and release still presents many challenges, with ongoing research still exploring how to load drugs onto nanofiber scaffolds without loss of activity and how to control their release in a specific spatiotemporal manner. This comprehensive study systematically reviews the applications and recent advances related to drug-laden nanofiber scaffolds for skin-wound management. First, we introduce commonly used methods for nanofiber preparation, including electrostatic spinning, sol-gel, molecular self-assembly, thermally induced phase separation, and 3D-printing techniques. Next, we summarize the polymers used in the preparation of nanofibers and drug delivery methods utilizing nanofiber scaffolds. We then review the application of drug-loaded nanofiber scaffolds for wound healing, considering the different stages of wound healing in which the drug acts. Finally, we briefly describe stimulus-responsive drug delivery schemes for nanofiber scaffolds, as well as other exciting drug delivery systems.

8.
Theranostics ; 13(8): 2562-2587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215563

RESUMEN

3D bioprinting is a revolutionary technology capable of replicating native tissue and organ microenvironments by precisely placing cells into 3D structures using bioinks. However, acquiring the ideal bioink to manufacture biomimetic constructs is challenging. A natural extracellular matrix (ECM) is an organ-specific material that provides physical, chemical, biological, and mechanical cues that are hard to mimic using a small number of components. Organ-derived decellularized ECM (dECM) bioink is revolutionary and has optimal biomimetic properties. However, dECM is always "non-printable" owing to its poor mechanical properties. Recent studies have focused on strategies to improve the 3D printability of dECM bioink. In this review, we highlight the decellularization methods and procedures used to produce these bioinks, effective methods to improve their printability, and recent advances in tissue regeneration using dECM-based bioinks. Finally, we discuss the challenges associated with manufacturing dECM bioinks and their potential large-scale applications.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Matriz Extracelular Descelularizada , Impresión Tridimensional , Matriz Extracelular/química , Bioimpresión/métodos , Andamios del Tejido/química
9.
Cell Death Discov ; 9(1): 138, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117222

RESUMEN

Cellular senescence describes a state of permanent proliferative arrest in cells. Studies have demonstrated that diabetes promotes the pathological accumulation of senescent cells, which in turn impairs cell movement and proliferation. Historically, senescence has been perceived to be a detrimental consequence of chronic wound healing. However, the underlying mechanism that causes senescent cells to remain in diabetic wounds is yet to be elucidated. Ferroptosis and ferritinophagy observed in diabetes are due to iron metabolism disorders, which are directly associated with the initiation and progression of diabetes. Herein, we reveal that senescent fibroblasts in diabetic wounds are resistant to ferroptosis and that impaired ferritinophagy may be a contributing cause. Further, the expression of NCOA4, a key factor that influences ferritinophagy, is decreased in both diabetic wound tissue and high glucose-induced senescent fibroblasts. Moreover, NCOA4 overexpression could render senescent fibroblasts more vulnerable to ferroptosis. A faster wound healing process was also linked to the induction of ferroptosis. Thus, resistance to ferroptosis impedes the removal of senescent fibroblasts; promoting ferritinophagy could reverse this process, which may have significant implications for the management of diabetic wounds.

10.
Int J Nanomedicine ; 18: 1537-1560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007988

RESUMEN

Diabetes mellitus (DM) induced wound healing impairment remains a serious health problem and burden on the clinical obligation for high amputation rates. Based on the features of wound microenvironment, biomaterials loading specific drugs can benefit diabetic wound treatment. Drug delivery systems (DDSs) can carry diverse functional substances to the wound site. Nano-drug delivery systems (NDDSs), benefiting from their features related to nano size, overcome limitations of conventional DDSs application and are considered as a developing process in the wound treatment field. Recently, a number of finely designed nanocarriers efficiently loading various substances (bioactive and non-bioactive factors) have emerged to circumvent constraints faced by traditional DDSs. This review describes various recent advances of nano-drug delivery systems involved in mitigating diabetes mellitus-based non-healing wounds.


Asunto(s)
Diabetes Mellitus , Sistema de Administración de Fármacos con Nanopartículas , Humanos , Cicatrización de Heridas , Diabetes Mellitus/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Materiales Biocompatibles
11.
iScience ; 26(1): 105835, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36624841

RESUMEN

Although both are applied in regenerative medicine, acellular dermal matrix (ADM) and concentrated growth factor (CGF) have their respective shortcoming: The functioning of CGF is often hindered by sudden release effects, among other problems, and ADM can only be used in outer dressing for wound healing. In this study, a compound network with physical-chemical double cross-linking was constructed using chemical cross-linking and the intertwining of ADM and chitosan chains under freezing conditions; equipped with good biocompatibility and cell/tissue affinity, the heparin-modified composite scaffold was able to significantly promote cell adhesion and proliferation to achieve adequate fixation and slow down the release of CGF; polydopamine nanoparticles having excellent near-infrared light photothermal conversion ability could significantly promote the survival of rat autologous skin grafts. In a word, this multifunctional composite scaffold is a promising new type of implant biomaterial capable of delivering CGF to promote the healing of full-thickness skin defects.

12.
Biomater Adv ; 136: 212790, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35929322

RESUMEN

Despite increasing potentials as a skin regeneration template (DRT) to guide tissue healing, acellular dermal matrix (ADM) is still challenged by issues (like dense architecture, low cellular adhesion and poor vascularization), contributing to necrosis and shedding of upper transplanted skins. Modified with polydopamine (PDA), a novel and porous DRT capable of drug delivery was designed using porcine-derived ADM (PADMS) gels, termed PDA-PADMS. However, it was unclear whether it could efficiently deliver human acidic fibroblast growth factor (a-FGF) and regenerate skin defects. Herein, after being fabricated and optimized with PADMS gels in different ratios (1:6, 1:7, 1:8), PDA-PADMS loading a-FGF (PDA-PADMS-FGF) was evaluated by the morphology, physical& chemical properties, drug release and in-vitro biological evaluations, followed by full-thickness skin defects implanted with PDA-PADMS-FGF covered by transplanted skins. Apart from containing abundant collagen and elastin, porous PADMS (with a loose and uniform structure) was demonstrated to possess controlled release of a-FGF and biocompatibility attributed to PDA coating. Consistent with augmented cellular migration and proliferation in vitro, PDA-PADMS-FGF also accelerated wound healing and reduced scarring, improving collagen arrangement and neovascularization. In conclusion, PDA-PADMS-FGF has a good potential and application prospect as a matrix material for wound repair.


Asunto(s)
Dermis Acelular , Animales , Colágeno/farmacología , Factor 1 de Crecimiento de Fibroblastos , Humanos , Indoles , Polímeros , Trasplante de Piel , Porcinos , Cicatrización de Heridas
13.
Burns Trauma ; 10: tkab045, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35187179

RESUMEN

Chronic wounds (e.g. diabetic wounds, pressure wounds, vascular ulcers, etc.) do not usually heal in a timely and orderly manner but rather last for years and may lead to irreversible adverse events, resulting in a substantial financial burden for patients and society. Recently, a large amount of evidence has proven that cellular senescence has a crucial influence on chronic nonhealing wounds. As a defensive mechanism, cell senescence is a manner of cell-cycle arrest with increased secretory phenotype to resist death, preventing cells from stress-induced damage in cancer and noncancer diseases. A growing amount of research has advanced the perception of cell senescence in various chronic wounds and focuses on pathological and physiological processes and therapies targeting senescent cells. However, previous reviews have failed to sum up novel understandings of senescence in chronic wounds and emerging strategies targeting senescence. Herein, we discuss the characteristics and mechanisms of cellular senescence and the link between senescence and chronic wounds as well as some novel antisenescence strategies targeting other diseases that may be applied for chronic wounds.

14.
Front Immunol ; 13: 1072573, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36798520

RESUMEN

Background: The most commonly acknowledged non-scarring alopecia are androgenetic alopecia (AGA) and alopecia areata (AA). Previous studies have revealed various risk factors associated with alopecia. However, the relationship between leukocyte telomere length (LTL) and non-scarring alopecia remains unclear. Methods: A two-sample Mendelian randomization (MR) analysis was performed to evaluate the causality between genetically predicted LTL and the risk of non-scarring alopecia. MR analyses were performed using the inverse variance-weighted (IVW) method and complemented with other MR methods. Results: The summary statistics of the genome-wide association studies (GWAS) for AGA and AA were obtained from the FinnGen biobank, which included 119,185 and 211,428 individuals, respectively. A total of 126 single nucleotide polymorphisms (SNPs) with genome-wide significance were selected as the instrumental variables for LTL. The MR analyses suggested a causal relationship between LTL and AGA, and the risk of AGA increased by 3.19 times as the genetically predicted LTL was shortened by one standard deviation in log transformed form under the IVW method (OR = 4.19, 95% CI = 1.20-14.61, p = 0.024). The other MR methods also demonstrated a similar trend of the effect of LTL on AGA. There was no causal relationship between LTL and AA (p > 0.05). Sensitivity analyses further demonstrated that the current results were less likely to be affected by confounders and bias. Conclusion: Our results suggested a potential causal relationship between LTL and AGA, and shortened LTL was associated with an increased risk of AGA.


Asunto(s)
Alopecia Areata , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Leucocitos , Telómero/genética
15.
Eur J Med Chem ; 229: 114048, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34954589

RESUMEN

Jiyuan Oridonin A (JOA) is a naturally occurring ent-kaurane diterpenoid that exhibits significant potential in the field of anti-tumor drug development. However, its detailed anti-cancer mechanism of action has not been fully understood. In order to investigate its anticancer mode of action, two series of novel fluorescent derivatives of JOA conjugated with naphthalimide dyes were synthesized, and their antitumor activity against five selected cancer cell lines (MGC-803, SW1990, PC-3, TE-1 and HGC-27) was evaluated. Compared with JOA, the anti-tumor activity of the vast majority of compounds were improved. Among them, B12 exhibited promising anti-proliferative activity against HGC-27 cells with IC50 value of 0.39 ± 0.09 µM. Fluorescence imaging studies demonstrated that probe B12 could enter HGC-27 cells in a dose-dependent and time-dependent manner and was mainly accumulated in mitochondria. Preliminary biological mechanism studies indicated that B12 was able to inhibit cell cloning and migration. Further studies suggested that B12-induced apoptosis was related to the mitochondrial pathway. Overall, our results provide new approaches to explore the molecular mechanism of the natural product JOA, which would contribute to its further development as an antitumor agent.


Asunto(s)
Antineoplásicos/síntesis química , Diterpenos de Tipo Kaurano/química , Colorantes Fluorescentes/química , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diterpenos de Tipo Kaurano/síntesis química , Diterpenos de Tipo Kaurano/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Relación Estructura-Actividad
16.
Bioorg Med Chem ; 45: 116331, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364224

RESUMEN

As a continuation of our research on developing potent and potentially safe androgen receptor (AR) degrader, a series of novel proteolysis targeting chimeras (PROTACs) containing the phthalimide degrons with different linker were designed, synthesized and evaluated for their AR degradation activity against LNCaP (AR+) cell line. Most of the synthesized compounds displayed moderate to satisfactory AR binding affinity and might lead to antagonist activity against AR. Among them, compound A16 exhibited the best AR binding affinity (85%) and degradation activity against AR. Due to the strong fluorescence properties of pomalidomide derivatives, B10 was found to be effectively internalized and visualized in LNCaP (AR + ) cells than PC-3 (AR-) cells. Moreover, the molecular docking of A16 with AR and the active site of DDB1-CRBN E3 ubiquitin ligase complex provides guidance to design new PROTAC degrons targeting AR for prostate cancer therapy. These results represent a step toward the development of novel and improved AR PROTACs.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Proteolisis/efectos de los fármacos , Receptores Androgénicos/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Modelos Moleculares , Estructura Molecular , Neoplasias de la Próstata/metabolismo , Relación Estructura-Actividad
17.
Bioact Mater ; 6(8): 2613-2628, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33615046

RESUMEN

Although employed to release growth factors (GFs) for regenerative medicine, platelet-rich plasma (PRP) has been hindered by issues like burst effect. Based on collagen sponge scaffolds (CSSs) modified with polydopamine (pDA), a novel dermal regeneration template (DRT) was designed. However, whether it could efficiently deliver PRP and even foster wound healing remained unclear. In this work, after PRP was prepared and pDA-modified CSSs (pDA-CSSs) were fabricated, microscopic observation, GFs release assay and in-vitro biological evaluations of pDA-CSSs with PRP (pDA-CSS@PRP) were performed, followed by BALA-C/nu mice full-thickness skin defects implanted with pDA-CSS@PRP covered by grafted skins (termed as a One-step strategy). As a result, scanning electron microscope demonstrated more immobilized platelets on pDA-CSS' surface with GFs' controlled release via enzyme-linked immunosorbent assay, compared with CSSs. In line with enhanced in-vitro proliferation, adhesion and migration of keratinocytes & endothelial cells, pDA-CSS@PRP were histologically revealed to accelerate wound healing with less scar via rapid angiogenesis, arrangement of more mature collagen, guiding cells to spread, etc. In conclusion, pDA-CSSs have potential to serve as a novel DRT capable of delivering PRP, which may foster full-thickness skin defect healing by means of a One-step strategy.

18.
Stem Cell Res Ther ; 11(1): 141, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32234069

RESUMEN

BACKGROUND: Three-dimensional (3D) cultivation with biomaterials was proposed to facilitate stem cell epithelial differentiation for wound healing. However, whether human adipose-derived stem cells (hASCs) on collagen sponge scaffold (CSS) better differentiate to keratinocytes remains unclear. METHODS: 3D cultivation with CSS on hASC epidermal differentiation co-cultured with HaCaT cells at air-liquid interface (ALI) was compared with two-dimensional (2D) form and cultivation without "co-culture" or "ALI." Cellular morphology, cell adhesion, and growth condition were evaluated, followed by the protein and gene expression of keratin 14 (K14, keratinocyte specific marker). RESULTS: Typical cobblestone morphology of keratinocytes was remarkably observed in co-cultured hASCs at ALI, but those seeded on the CSS exhibited more keratinocyte-like cells under an invert microscope and scanning electron microscope. Desired cell adhesion and proliferation were confirmed in 3D differentiation groups by rhodamine-labeled phalloidin staining, consistent with H&E staining. Compared with those cultured in 2D culture system or without "ALI," immunofluorescence staining and gene expression analysis revealed hASCs co-cultured over CSS expressed K14 at higher levels at day 15. CONCLUSIONS: CSS is positive to promote epithelial differentiation of hASCs, which will foster a deeper understanding of artificial dermis in skin wound healing and regeneration.


Asunto(s)
Tejido Adiposo , Células Madre , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Colágeno , Humanos , Andamios del Tejido
19.
Eur J Med Chem ; 182: 111645, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31494472

RESUMEN

As our research focus on anticancer drugs, two series of novel derivatives of Flexicaulin A (FA), an ent-kaurene diterpene, condensation with amino acid trifluoroacetate were synthesized, and their anti-proliferative activity against four human cancer cell lines (TE-1, MCF-7, A549 and MGC-803) were evaluated. Compared with FA, the anticancer activity and solubility of most derivatives were significantly improved. Among them, compound 6d had the best activity, and its IC50 value against Esophageal cancer cells (TE-1) was up to 0.75 µM. Subsequent cellular mechanism studies showed that compound 6d could inhibit the proliferation of cancer cells, the formation of cell colonies, and increase the level of ROS on TE-1 cells. In addition, 6d could up-regulate the expressions of SAPK/JNK pathway-associated proteins (p-ASK1, p-MKK4 and p-JNK) and pro-apoptotic proteins (Bak, Bad and Noxa), remarkably increase the ratio of Bax to Bcl-2 and activate Cleaved Caspase-3/9/PARP. These results indicate that compound 6d induces apoptosis through the ROS/JNK/Bcl-2 pathway and holds promising potential as an anti-proliferative agent.


Asunto(s)
Aminoácidos/farmacología , Antineoplásicos/farmacología , Diterpenos de Tipo Kaurano/farmacología , Ácido Trifluoroacético/farmacología , Aminoácidos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diterpenos de Tipo Kaurano/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Ácido Trifluoroacético/química , Células Tumorales Cultivadas
20.
New Phytol ; 224(1): 396-408, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31148173

RESUMEN

Plants form a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, which facilitates the acquisition of scarce minerals from the soil. In return, the host plants provide sugars and lipids to its fungal partner. However, the mechanism by which the AM fungi obtain sugars from the plant has remained elusive. In this study we investigated the role of potential SWEET family sugar exporters in AM symbiosis in Medicago truncatula. We show that M. truncatula SWEET1b transporter is strongly upregulated in arbuscule-containing cells compared to roots and localizes to the peri-arbuscular membrane, across which nutrient exchange takes place. Heterologous expression of MtSWEET1b in a yeast hexose transport mutant showed that it mainly transports glucose. Overexpression of MtSWEET1b in M. truncatula roots promoted the growth of intraradical mycelium during AM symbiosis. Surprisingly, two independent Mtsweet1b mutants, which are predicted to produce truncated protein variants impaired in glucose transport, exhibited no significant defects in AM symbiosis. However, arbuscule-specific overexpression of MtSWEET1bY57A/G58D , which are considered to act in a dominant-negative manner, resulted in enhanced collapse of arbuscules. Taken together, our results reveal a (redundant) role for MtSWEET1b in the transport of glucose across the peri-arbuscular membrane to maintain arbuscules for a healthy mutually beneficial symbiosis.


Asunto(s)
Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Proteínas de Transporte de Membrana/metabolismo , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Simbiosis , Alelos , Regulación de la Expresión Génica de las Plantas , Genes Dominantes , Glucosa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Medicago truncatula/genética , Membranas/metabolismo , Modelos Biológicos , Mutagénesis Insercional/genética , Micelio/crecimiento & desarrollo , Micorrizas/citología , Micorrizas/crecimiento & desarrollo , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA