Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2407150, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370569

RESUMEN

The development of new ionic conductors meeting the requirements of current solid-state devices is imminent but still challenging. Hydrogen-bonded ionic co-crystals (HICs) are multi-component crystals based on hydrogen bonding and Coulombic interactions. Due to the hydrogen bond network and unique features of ionic crystals, HICs have flexible skeletons. More importantly, anion vacancies on their surface can potentially help dissociate and adsorb excess anions, forming cation transport channels at grain boundaries. Here, it is demonstrated that a HIC optimized by adjusting the ratio of zinc salt and imidazole can construct grain boundary-based fast Zn2+ transport channels. The as-obtained HIC solid electrolyte possesses an unprecedentedly high ionic conductivity at room and low temperatures (≈11.2 mS cm-1 at 25 °C and ≈2.78 mS cm-1 at -40 °C) with ultra-low activation energy (≈0.12 eV), while restraining dendrite growth and exhibiting low overpotential even at a high current density (<200 mV at 5.0 mA cm-2) during Zn symmetric cell cycling. This HIC also allows solid-state Zn||covalent organic framework full cells to work at low temperatures, providing superior stability. More importantly, the HIC can even support zinc-ion hybrid supercapacitors to work, achieving extraordinary rate capability and a power density comparable to aqueous solution-based supercapacitors. This work provides a path for designing facilely prepared, low-cost, and environmentally friendly ionic conductors with extremely high ionic conductivity and excellent interface compatibility.

2.
Adv Mater ; : e2409810, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39328093

RESUMEN

Aqueous zinc-bromine (Zn||Br2) batteries are regarded as one of the most promising energy storage devices due to their high safety, theoretical energy density, and low cost. However, the sluggish bromine redox kinetics and the formation of a soluble tribromide (Br3 -) hinder their practical applications. Here, it is proposed dispersed single iron atom coordinated with nitrogen atoms (FeN5) in a mesoporous carbon framework (FeSAC-CMK) as a conductive catalytic bromine host, which possesses porous structure and electrocatalytic functionality of FeN5 species for enhanced confinement and electrocatalytic effect. The active FeN5 species can fix the bromine (Br0) species to suppress the formation of Br3 - effectively and bifunctionally catalyze the bromide (Br-)/Br° conversion. These free up 1/3 Br- locked by Br3 - complexing agent for enhanced bromine utilization efficiency and conversion reversibility. Accordingly, the Zn||Br2 battery with FeSAC-CMK delivers an impressive specific capacity of 344 mAh g-1 at 0.2 A g-1 and superior rate capability with 164 mAh g-1 achieved even at 20 A g-1, much higher than that of inactive CMK (262 mAh g-1 at 0.2 A g-1; 6 mAh g-1 at only 8 A g-1). Furthermore, the battery demonstrates excellent cycling performance of 88% capacity retention after 2000 cycles.

3.
Angew Chem Int Ed Engl ; : e202410978, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287021

RESUMEN

Efficient and stable bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts are urgently needed to unlock the full potential of zinc-air batteries (ZABs). High-valence oxides (HVOs) and high entropy oxides (HEOs) are suitable candidates for their optimal electronic structures and stability but suffer from demanding synthesis. Here, a low-cost fluorine-lodged high-valent high-entropy layered double hydroxide (HV-HE-LDH) (FeCoNi2F4(OH)4) is conveniently prepared through multi-ions co-precipitation, where F- are firmly embedded into the individual hydroxide layers. Spectroscopic detections and theoretical simulations reveal high valent metal cations are obtained in FeCoNi2F4(OH)4, which enlarge the energy band overlap between metal 3d and O 2p, enhancing the electronic conductivity and charge transfer, thus affording high intrinsic OER catalytic activity. More importantly, the strengthened metal-oxygen (M-O) bonds and stable octahedral geometry (M-O(F)6) in FeCoNi2F4(OH)4 prevent structural reorganization, rendering long-term catalytic stability. Furthermore, an efficient three-phase reaction interface with fast oxygen transportation was constructed, significantly improving the ORR activity. ZABs assembled with FeCoNi2F4(OH)4@HCC (hydrophobic carbon cloth) cathodes deliver a top performance with high round-trip energy efficiency (61.3 % at 10 mA cm-2) and long-term stability (efficiency remains at 58.8 % after 1050 charge-discharge cycles).

4.
Adv Mater ; : e2410209, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39300868

RESUMEN

Organic materials are promising candidates for the electrodes of aqueous zinc-ion batteries due to their nonmetallic nature, environmental friendliness, and cost-effectiveness. However, they often suffer from significant dissolution during the charge-discharge process, which poses a major hurdle to their practical applications. Inspired by membrane-less organelles in cells, a simple and versatile strategy is proposed-constructing a Janus catholyte/cathode structured electrode based on liquid-liquid phase separation, in which redox-active organic molecules are confined in the liquid state within the activated carbon, thereby eliminating the volume effect and preventing their diffusion into the electrolyte. The customization of phase separation systems by leveraging the hydrophobicity/hydrophilicity differences of various anions is successfully demonstrated. This approach allows for precise regulation of ion cluster/coordination structures, enabling the confinement of active substances while ensuring efficient ion transport. Consequently, the as-constructed Zn||Janus catholyte/cathode cells exhibit superior reversible rate capacity (186 mA h g-1 at 5.0 A g-1) and remarkable cycling performance (retention of 72.5% after 12 000 cycles). The strategy in building Janus catholyte/cathode structured electrodes breaks free from the limitations imposed by traditional solid-state electrodes, offering tremendous opportunities for exploring diverse advanced battery systems.

5.
Angew Chem Int Ed Engl ; : e202412830, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39157915

RESUMEN

In the electrochemical nitrogen reduction reaction (NRR), a leverage relationship exists between NH3-producing activity and selectivity because of the competing hydrogen evolution reaction (HER), which means that high activity with strong protons adsorption causes low product selectivity. Herein, we design a novel metal-organic hydrogen bonding framework (MOHBF) material to modulate this leverage relationship by a hydrogen-bond-regulated proton transfer pathway. The MOHBF material was composited with reduced graphene oxide (rGO) to form a Ni-N2O2 molecular catalyst (Ni-N2O2/rGO). The unique structure of O atoms in Ni-O-C and N-O-H could form hydrogen bonds with H2O molecules to interfere with protons being directly adsorbed onto Ni active sites, thus regulating the proton transfer mechanism and slowing the HER kinetics, thereby modulating the leverage relationship. Moreover, this catalyst has abundant Ni-single-atom sites enriched with Ni-N/O coordination, conducive to the adsorption and activation of N2. The Ni-N2O2/rGO exhibits simultaneously enhanced activity and selectivity of NH3 production with a maximum NH3 yield rate of 209.7 µg h-1 mgcat. -1 and a Faradaic efficiency of 45.7 %, outperforming other reported single-atom NRR catalysts.

7.
Small ; : e2402767, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086056

RESUMEN

Electroactive organic electrode materials exhibit remarkable potential in aqueous zinc ion batteries (AZIBs) due to their abundant availability, customizable structures, sustainability, and high reversibility. However, the research on AZIBs has predominantly concentrated on unraveling the storage mechanism of zinc cations, often neglecting the significance of anions in this regard. Herein, bipolar poly(thionine) is synthesized by a simple and efficient polymerization reaction, and the kinetics of different anions are investigated using poly(thionine) as the cathode of AZIBs. Notably, poly(thionine) is a bipolar organic polymer electrode material and exhibits enhanced stability in aqueous solutions compared to thionine monomers. Kinetic analysis reveals that ClO4 - exhibits the fastest kinetics among SO4 2-, Cl-, and OTF-, demonstrating excellent rate performance (109 mAh g-1 @ 0.5 A g-1 and 92 mAh g-1 @ 20 A g-1). Mechanism studies reveal that the poly(thionine) cathode facilitates the co-storage of both anions and cations in Zn(ClO4)2. Furthermore, the lower electrostatic potential of ClO4 - influences the strength of hydrogen bonding with water molecules, thereby enhancing the overall kinetics in aqueous electrolytes. This work provides an effective strategy for synthesizing high-quality organic materials and offers new insights into the kinetic behavior of anions in AZIBs.

8.
Angew Chem Int Ed Engl ; 63(43): e202411443, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034634

RESUMEN

The main challenges faced by aqueous rechargeable nickel-zinc batteries are their comparatively low energy density and poor cycling stability, mainly due to the limited capacity and reversibility of existing Ni-based cathodes. Moreover, the preparation procedures of these cathodes are complex and not easily scalable, which makes them less promising for large-scale energy storage. Herein, we utilized MXene as a functional additive to effectively improve the electrodeposition preparation of NiCo layered double hydroxides (LDH). Benefiting from the improved interfacial contact between nickel foam (NF) and platting solution and the enhanced ionic conductivity of platting product based on MXene additives, the resulting binder-free NiCo LDH electrode can achieve ultrahigh areal loading (~65 mg cm-2) with abundant active surface for redox reactions and maintained short transport pathway for ion diffusion and charge transfer. Furthermore, the as-fabricated alkaline NiCo LDH-based battery delivers high discharge capacity, up to 20.2 mAh cm-2 (311 mAh g-1), accompanied by remarkable rate performance (9.6 mAh cm-2 or 148 mAh g-1 at 120 mA cm-2). Due to the high structural and chemical stability of MXenes/LDH-based electrode, excellent cycling life can also be achieved with 88.6 % capacity retention after 10000 cycles. In addition, ultrahigh areal energy density (31.2 mWh cm-2) and gravimetric energy density (465 Wh kg-1) can be simultaneously achieved. This work has inspired the design of advanced cathode materials to develop high-performance aqueous zinc batteries.

9.
Small ; 20(44): e2404865, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38984733

RESUMEN

Aqueous zinc metal batteries are regarded as a promising energy storage solution for a green and sustainable society in the future. However, the practical application of metallic zinc anode is plagued by the thermodynamic instability issue of water molecules in conventional electrolytes, which leads to severe dendrite growth and side reactions. In this work, an ultra-thin and high areal capacity metallic zinc anode is achieved by utilizing crystalline water with a stable stoichiometric ratio. Unlike conventional electrolytes, the designed electrolyte can effectively suppress the reactivity of water molecules and diminish the detrimental corrosion on the metallic zinc anode, while preserving the inherent advantages of water molecules, including great kinetic performance in electrolytes and H+ capacity contribution in cathodes. Based on the comprehensive performance of the designed electrolyte, the 10 µm Zn||10 µm Zn symmetric cell stably ran for 1000 h at the current density of 1 mA cm-2, and the areal capacity of 1 mAh cm-2, whose depth-of-discharge is over 17.1%. The electrochemical performance of the 10 µm Zn||9.3 mg cm-2 polyaniline (PANI) full-cell demonstrates the feasibility of the designed electrolyte. This work provides a crucial understanding of balancing activity of water molecules in aqueous zinc metal batteries.

10.
BME Front ; 5: 0044, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946867

RESUMEN

Objective: We have developed a baroreceptor-inspired microneedle skin patch for pressure-controlled drug release. Impact Statement: This design is inspired by the skin baroreceptors, which are mechanosensitive elements of the peripheral nervous system. We adopt the finger touching to trigger the electric stimulation, ensuring a fast-response and user-friendly administration with potentially minimal off-target effects. Introduction: Chronic skin diseases bring about large, recurrent skin damage and often require convenient and timely transdermal treatment. Traditional methods lack spatiotemporal controllable dosage, leaving a risk of skin irritation or drug resistance issues. Methods: The patch consists of drug-containing microneedles and stretchable electrode array. The electrode array, integrated with the piezoconductive switch and flexible battery, provides a mild electric current only at the spot that is pressed. Drugs in microneedles will then flow along the current into the skin tissues. The stretchable feature also provides the mechanical robustness and electric stability of the device on large skin area. Results: This device delivers Cy3 dye in pig skin with spatiotemporally controlled dosage, showing ~8 times higher fluorescence intensity than the passive delivery. We also deliver insulin and observe the reduction of the blood glucose level in the mouse model upon pressing. Compared with passive delivery without pressing, the dosage of drugs released by the simulation is 2.83 times higher. Conclusion: This baroreceptor-inspired microneedle skin patch acts as a good example of the biomimicking microneedle device in the precise control of the drug release profile at the spatiotemporal resolution.

11.
J Am Chem Soc ; 146(34): 23786-23796, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38959288

RESUMEN

The exploitation of new anion battery systems based on high-abundance oceanic elements (e.g., F-, Cl-, and Br-) is a strong supplement to the current metal cation (e.g., Li+, Na+) battery technologies. Bismuth (Bi), the rare anion-specific anode species nearest to practical application for chloride ion storage, is plagued by volume expansion and structure collapse due to limited control of its conversion behavior. Here, we reveal that a unique epitaxy-like conversion mechanism in the monocrystalline Bi nanospheres (R3m group) can drastically inhibit grain pulverization and capacity fading, which is enabled by Cl- intercalation in their interlayer space. The Bi nanosphere anode can self-evolve and transform into a rigid BiOCl nanosheet-interlaced structure after the initial conversion reaction. With this epitaxy-like conversion mechanism, the Bi anode exhibits a record-high capacity of 249 mAh g-1 (∼1.2 mAh cm-2) at 0.25 C and sustains more than 1400 h with 20% capacity loss. Pairing this anode with a Prussian blue cathode, the full battery can deliver an ultrahigh desalination capacity of 127.1 m gCl gBi-1. Our study milestones the understanding of conversion-type anode structures, which is an essential step toward the commercialization of aqueous batteries.

12.
Nanoscale ; 16(27): 13148-13160, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38912906

RESUMEN

In this comprehensive investigation, we explore the effectiveness of 55 dual-atom catalysts (DACs) supported on graphitic carbon nitride (gCN) for both alkaline and acidic hydrogen evolution reactions (HER). Employing density functional theory (DFT), we scrutinize the thermodynamic and kinetic profiles of these DACs, revealing their considerable potential across a diverse pH spectrum. For acidic HER, our results identify catalysts such as FePd-gCN, CrCr-gCN, and NiPd-gCN, displaying promising ΔGH* values of 0.0, 0.0, and -0.15 eV, respectively. This highlights their potential effectiveness in acidic environments, thereby expanding the scope of their applicability. Within the domain of alkaline HER, this study delves into the thermodynamic and kinetic profiles of DACs supported on gCN, utilizing DFT to illuminate their efficacy in alkaline HER. Through systematic evaluation, we identify that DACs such as CrCo-gCN, FeRu-gCN, and FeIr-gCN not only demonstrate favorable Gibbs free energy change (ΔGmax) for the overall water splitting reaction of 0.02, 0.27, and 0.38 eV, respectively, but also feature low activation energies (Ea) for water dissociation, with CrCo-gCN, FeRu-gCN, and FeIr-gCN notably exhibiting the Ea of just 0.42, 0.33, and 0.42 eV, respectively. The introduction of an electronic descriptor (φ), derived from d electron count (Nd) and electronegativity (ETM), provides a quantifiable relationship with catalytic activity, where a lower φ corresponds to enhanced reaction kinetics. Specifically, φ values between 4.0-4.6 correlate with the lowest kinetic barriers, signifying a streamlined HER process. Our findings suggest that DACs with optimized φ values present a robust approach for the development of high-performance alkaline HER electrocatalysts, offering a pathway towards the rational design of energy-efficient catalytic systems.

13.
Sci Adv ; 10(24): eadl0587, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875345

RESUMEN

Despite their potential as conversion-type energy storage technologies, the performance of static lithium-bromide (SLB) batteries has remained stagnant for decades. Progress has been hindered by the intrinsic liquid-liquid redox mode and single-electron transfer of these batteries. Here, we developed a high-performance SLB battery based on the active bromine salt cathode and the two-electron transfer chemistry with a Br-/Br+ redox couple by electrolyte tailoring. The introduction of NO3- improved the reversible single-electron transition of Br-, and more impressively, the coordinated Cl- anions activated the Br+ conversion to provide an additional electron transfer. A voltage plateau was observed at 3.8 V, and the discharge capacity and energy density were increased by 142 and 159% compared to the one-electron reaction benchmark. This two-step conversion mechanism exhibited excellent stability, with the battery functioning for 1000 cycles. These performances already approach the state of the art of currently established Li-halogen batteries. We consider the established two-electron redox mechanism highly exemplary for diversified halogen batteries.

14.
Adv Mater ; 36(33): e2406451, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38888505

RESUMEN

Zinc metal is recognized as the most promising anode for aqueous energy storage but suffers from severe dendrite growth and poor reversibility. However, the coulombic efficiency lacks specificity for zinc dendrite growth, particularly in Zn||Zn symmetric cells. Herein, a novel indicator (fD) based on the characteristic crystallization peaks is proposed to evaluate the growth and distribution of zinc dendrites. As a proof of concept, triethylenetetramine (TETA) is adopted as an electrolyte additive to manipulate the zinc flux for uniform deposition, with a corroborating low fD value. A highly durable zinc symmetric cell is achieved, lasting over 2500 h at 10 mA cm-2 and 400 h at a large discharge of depth (10 mA cm-2, 10 mAh cm-2). Supported by the low fD value, the Zn||TETA-ZnSO4||MnO2 batteries overcome the sudden short circuit and fast capacity fading. The study provides a feasible method to evaluate zinc dendrites and sheds light on the design of highly reversible zinc anodes.

15.
Adv Mater ; 36(30): e2402898, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38862392

RESUMEN

Sulfur is a promising conversion-type cathode for zinc batteries (ZBs) due to its high discharge capacity and cost-effectiveness. However, the redox conversion of multivalent S in ZBs is still limited, only having achieved S0/S2- redox conversion with low discharge voltage and poor reversibility. This study presents significant progress by demonstrating, for the first time, the reversible S2-/S4+ redox behavior in ZBs with up to six-electron transfer (with an achieved discharge capacity of ≈1284 mAh g-1) using a highly concentrated ClO4 --containing electrolyte. The developed succinonitrile-Zn(ClO4)2 eutectic electrolyte stabilizes the positive-valence S compound and contributes to an ultra-low polarization voltage. Notably, the achieved flat discharge plateaus demonstrate the highest operation voltage (1.54 V) achieved to date in Zn‖S batteries. Furthermore, the high-voltage Zn‖S battery exhibits remarkable conversion dynamics, excellent cycling performance (85.7% capacity retention after 500 cycles), high efficiency (98.4%), and energy density (527 Wh kg S -1). This strategy of positive-valence conversion of sulfur represents a significant advancement in understanding sulfur chemistry in batteries and holds promise for future high-voltage sulfur-based batteries.

16.
Nat Commun ; 15(1): 3748, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702298

RESUMEN

The high redox potential of Zn0/2+ leads to low voltage of Zn batteries and therefore low energy density, plaguing deployment of Zn batteries in many energy-demanding applications. Though employing high-voltage cathode like spinel LiNi0.5Mn1.5O4 can increase the voltages of Zn batteries, Zn2+ ions will be immobilized in LiNi0.5Mn1.5O4 once intercalated, resulting in irreversibility. Here, we design a polymer hetero-electrolyte consisting of an anode layer with Zn2+ ions as charge carriers and a cathode layer that blocks the Zn2+ ion shuttle, which allows separated Zn and Li reversibility. As such, the Zn‖LNMO cell exhibits up to 2.4 V discharge voltage and 450 stable cycles with high reversible capacity, which are also attained in a scale-up pouch cell. The pouch cell shows a low self-discharge after resting for 28 days. The designed electrolyte paves the way to develop high-voltage Zn batteries based on reversible lithiated cathodes.

17.
Nat Commun ; 15(1): 3841, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714710

RESUMEN

Aqueous Zn-I flow batteries utilizing low-cost porous membranes are promising candidates for high-power-density large-scale energy storage. However, capacity loss and low Coulombic efficiency resulting from polyiodide cross-over hinder the grid-level battery performance. Here, we develop colloidal chemistry for iodine-starch catholytes, endowing enlarged-sized active materials by strong chemisorption-induced colloidal aggregation. The size-sieving effect effectively suppresses polyiodide cross-over, enabling the utilization of porous membranes with high ionic conductivity. The developed flow battery achieves a high-power density of 42 mW cm-2 at 37.5 mA cm-2 with a Coulombic efficiency of over 98% and prolonged cycling for 200 cycles at 32.4 Ah L-1posolyte (50% state of charge), even at 50 °C. Furthermore, the scaled-up flow battery module integrating with photovoltaic packs demonstrates practical renewable energy storage capabilities. Cost analysis reveals a 14.3 times reduction in the installed cost due to the applicability of cheap porous membranes, indicating its potential competitiveness for grid energy storage.

18.
Adv Mater ; 36(28): e2401549, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38739735

RESUMEN

Residual solvents in vinylidene fluoride (VDF)-based solid polymer electrolytes (SPEs) have been recognized as responsible for their high ionic conductivity. However, side reactions by the residual solvents with the lithium (Li) metal induce poor stability, which has been long neglected. This study proposes a strategy to achieve a delicate equilibrium between ion conduction and electrode stability for VDF-based SPEs. Specifically, 2,2,2-trifluoro-N,N-dimethylacetamide (FDMA) is developed as the nonside reaction solvent for poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF)-based SPEs, achieving both high ionic conductivity and significantly improved electrochemical stability. The developed FDMA solvent fosters the formation of a stable solid electrolyte interphase (SEI) through interface reactions with Li metal, effectively mitigating side reactions and dendrite growth on the Li metal electrode. Consequently, the Li||Li symmetric cells and Li||LiFePO4 cells demonstrate excellent cycling performance, even under limited Li (20 µm thick) supply and high-loading cathodes (>10 mg cm-2, capacity >1 mAh cm-2) conditions. The stable Li||LiCoO2 cells operation with a cutoff voltage of 4.48 V indicates the high-voltage stability of the developed SPE. This study offers valuable insights into the development of advanced VDF-based SPEs for enhanced lithium metal battery performance and longevity.

19.
Nat Rev Chem ; 8(7): 493-494, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38760572
20.
J Am Chem Soc ; 146(22): 15393-15402, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38767283

RESUMEN

Quinone-based electrodes using carbonyl redox reactions are promising candidates for aqueous energy storage due to their high theoretical specific capacity and high-rate performance. However, the proton storage manners and their influences on the electrochemical performance of quinone are still not clear. Herein, we reveal that proton storage could determine the products of the enol conversion and the electrochemical stability of the organic electrode. Specifically, the protons preferentially coordinated with the prototypical pyrene-4,5,9,10-tetraone (PTO) cathode, and increasing the proton concentration in the electrolyte can improve its working potentials and cycling stability by tailoring the enol conversion reaction. We also found that exploiting Al2(SO4)3 as a pH buffer can increase the energy density of the Zn||PTO batteries from 242.8 to 284.6 Wh kg-1. Our research has a guiding significance for emphasizing proton storage of organic electrodes based on enol conversion reactions and improving their electrochemical performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...