Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(33): 14906-14917, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39104092

RESUMEN

Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D Co3O4 and its growth on Fe foam for the first time to yield a unique monolithic catalyst named Co3O4/Fe-S. Compared to the Co3O4 nanocube-loaded Fe foam, Co3O4/Fe-S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that Co3O4/Fe-S possesses abundant 2D Co3O4/Fe3O4 composite interfaces, which promote the construction of active sites (oxygen vacancy and Co3+) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir-Hinshelwood (L-H) and Mars-van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D Co3O4/Fe3O4 composite interfaces are generated in situ in molten salt, inducing the growth of 2D Co3O4 onto the surface lattice of 2D Fe3O4. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation.


Asunto(s)
Oxidación-Reducción , Oxígeno , Tolueno , Catálisis , Tolueno/química , Oxígeno/química , Compuestos Orgánicos Volátiles/química , Cobalto/química , Óxidos/química
2.
ACS Appl Mater Interfaces ; 14(22): 26245-26254, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35608062

RESUMEN

Two-dimensional molybdenum disulfide (MoS2), featuring unique optoelectronic properties, has attracted tremendous interest in developing novel photodetection devices. However, the limited light absorption and small carrier transport rate of the monolayer MoS2 result in low photoresponse, and the large band gap limits its detection range in the visible region. In this study, we propose a nanoslit array-MoS2 hybrid device architecture with enhanced and broadened photoresponse. The nanoslit array can localize free-space light to achieve strong interactions with MoS2, and acts as the channel to improve charge transport. As a result, the Au nanoslit array-MoS2 hybrid detector exhibits a nearly 100-fold increase in photocurrent compared to the pure MoS2 device. More importantly, the hybrid device can broaden the photoresponse to the optical communication band of 1550 nm which is lower than the band gap of MoS2, by efficiently utilizing the hot carriers generated by the Au nanoslits. The experimental results are supported by both theoretical analysis and numerical simulation. Since our demonstration leverages the engineering of the hybrid photodetectors with metal nanostructures rather than semiconductor materials, it should be universal and applicable to other devices for broadband, high-efficiency photoelectric conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...