Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 14(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37103269

RESUMEN

One of the promising novel methods for radical tumor resection at a single-cell level is magneto-mechanical microsurgery (MMM) with magnetic nano- or microdisks modified with cancer-recognizing molecules. A low-frequency alternating magnetic field (AMF) remotely drives and controls the procedure. Here, we present characterization and application of magnetic nanodisks (MNDs) as a surgical instrument ("smart nanoscalpel") at a single-cell level. MNDs with a quasi-dipole three-layer structure (Au/Ni/Au) and DNA aptamer AS42 (AS42-MNDs) on the surface converted magnetic moment into mechanical and destroyed tumor cells. The effectiveness of MMM was analyzed on Ehrlich ascites carcinoma (EAC) cells in vitro and in vivo using sine and square-shaped AMF with frequencies from 1 to 50 Hz with 0.1 to 1 duty-cycle parameters. MMM with the "Nanoscalpel" in a sine-shaped 20 Hz AMF, a rectangular-shaped 10 Hz AMF, and a 0.5 duty cycle was the most effective. A sine-shaped field caused apoptosis, whereas a rectangular-shaped field caused necrosis. Four sessions of MMM with AS42-MNDs significantly reduced the number of cells in the tumor. In contrast, ascites tumors continued to grow in groups of mice and mice treated with MNDs with nonspecific oligonucleotide NO-MND. Thus, applying a "smart nanoscalpel" is practical for the microsurgery of malignant neoplasms.

2.
Nano Lett ; 23(7): 2570-2577, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36920328

RESUMEN

During the last years, giant optical anisotropy has demonstrated its paramount importance for light manipulation. In spite of recent advances in the field, the achievement of continuous tunability of optical anisotropy remains an outstanding challenge. Here, we present a solution to the problem through the chemical alteration of halogen atoms in single-crystal halide perovskites. As a result, we manage to continually modify the optical anisotropy by 0.14. We also discover that the halide perovskite can demonstrate optical anisotropy up to 0.6 in the visible range─the largest value among non-van der Waals materials. Moreover, our results reveal that this anisotropy could be in-plane and out-of-plane depending on perovskite shape─rectangular and square. As a practical demonstration, we have created perovskite anisotropic nanowaveguides and shown a significant impact of anisotropy on high-order guiding modes. These findings pave the way for halide perovskites as a next-generation platform for tunable anisotropic photonics.

3.
Biomedicines ; 10(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35885046

RESUMEN

Cell and tissue nanomechanics has been intriguingly introduced into biomedical research, not only complementing traditional immunophenotyping and molecular analysis, but also bringing unexpected new insights for clinical diagnostics and bioengineering. However, despite the progress in the study of individual cells in culture by atomic force microscopy (AFM), its application for mapping live tissues has a number of technical limitations. Here, we elaborate a new technique to study live slices of normal brain tissue and tumors by combining morphological and nanomechanical AFM mapping in high throughput scanning mode, in contrast to the typically utilized force spectroscopy mode based on single-point probe application. This became possible due to the combined use of an appropriate embedding matrix for vibratomy and originally modified AFM probes. The embedding matrix composition was carefully developed by regulating the amounts of agar and collagen I to reach optimal viscoelastic properties for obtaining high-quality live slices that meet AFM requirements. AFM tips were rounded by irradiating them with focused nanosecond laser pulses, while the resulting tip morphology was verified by scanning electron microscopy. Live slices preparation and AFM investigation take only 55 min and could be combined with a vital cell tracer analysis or immunostaining, thus making it promising for biomedical research and clinical diagnostics.

4.
Materials (Basel) ; 15(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269035

RESUMEN

Long-term stability in contact with water of organosilane layers formed by octadecyltrimethoxysilane (ODTMS) on polished aluminum alloy (AA2024) through dip-coating was studied by combining SEM, water contact angle measurements, and X-ray photoelectron spectroscopy. Similar organosilane layers were formed on AA2024 coated with permanganate conversion coating, 1,2-bis(triethoxysilyl)ethane (BTSE) and hydrated SiOx as under-layers, after which their long-term durability was also tested. During immersion in water for about one month, all the samples exhibited a decrease in hydrophobicity, implying the prepared organosilane layer was not stable over time, gradually hydrolyzing and letting water interact with the underlying layer. In parallel, SEM images of one-layer samples taken after immersion showed clear signs of local electrochemical corrosion, while XPS analysis confirmed a loss of silicon from the surface layer. The highest stability over time was demonstrated by a one-layer sample prepared in an ethanol/water bath for 5 min and by a similar ODTMS layer prepared on hydrated MnOx as an under-layer.

5.
Materials (Basel) ; 15(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269065

RESUMEN

The optical response of properly excited periodically arranged plasmonic nanostructures is known to demonstrate sharp resonance features associated with high-Q collective modes demanding for various applications in light-matter interaction, filtering and sensing. Meanwhile, practical realization and replication of plasmonic platforms supporting high-Q modes via scalable inexpensive lithography-free approach is still challenging. Here, we justify direct ablation-free irradiation of Si-supported thin Au film by nanojoule-energy femtosecond laser pulses as a single-step and scalable technology for realization of plasmonic metasurfaces supporting collective plasmonic response. Using an adjustable aperture to control and upscale the size of the fabricated nanostructures, nanobumps and nanojets, we demonstrated plasmonic metasurface supporting collective resonances with a moderately high Q-factor (up to 17) and amplitude (up to 45%) within expanded spectral range (1.4-4.5 µm). Vacuum deposition of thin films above the as-fabricated nanostructure arrays was demonstrated to provide fine tuning of the resonance position, also expanding the choice of available materials for realization of plasmonic designs with extended functionality.

6.
Nanomaterials (Basel) ; 12(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269329

RESUMEN

Recently, sensors using surface-enhanced Raman scattering (SERS) detectors combined with superhydrophobic/superhydrophilic analyte concentration systems showed the ability to reach detection limits below the femto-molar level. However, a further increase in the sensitivity of these sensors is limited by the impossibility of the concentration systems to deposit the analyte on an area of less than 0.01 mm2. This article proposes a fundamentally new approach to the analyte enrichment, based on the effect of non-uniform electrostatic field on the evaporating droplet. This approach, combined with the optimized geometry of a superhydrophobic/superhydrophilic concentration system allows more than a six-fold reduction of the deposition area. Potentially, this makes it possible to improve the detection limit of the plasmonic sensors by the same factor, bringing it down to the attomolar level.

7.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35159650

RESUMEN

Recently, highly uniform thermochemical laser-induced periodic surface structures (TLIPSS) have attracted significant research attention due to their practical applicability for upscalable fabrication of periodic surface morphologies important for surface functionalization, diffraction optics, sensors, etc. When processed by femtosecond (fs) laser pulses in oxygen-containing environments, TLIPSS are formed on the material surface as parallel protrusions upon local oxidation in the maxima of the periodic intensity pattern coming from interference of the incident and scattered waves. From an application point of view, it is important to control both the TLIPSS period and nanoscale morphology of the formed protrusions that can be expectedly achieved by scalable shrinkage of the laser-processing wavelength as well as by varying the ambient environment. However, so far, the fabrication of uniform TLIPSS was reported only for near-IR wavelength in air. In this work, TLIPSS formation on the surface of titanium (Ti) films was systematically studied using near-IR (1026 nm), visible (513 nm) and UV (256 nm) wavelengths revealing linear scalability of the protrusion period versus the fs-laser wavelength. By changing the ambient environment from air to vacuum (10-2 atm) and pressurized nitrogen gas (2.5 atm) we demonstrate tunability of the composition and morphology of the Ti TLIPSS protrusions. In particular, Raman spectroscopy revealed formation of TiN together with dominating TiO2 (rutile phase) in the TLIPSS protrusions produced in the nitrogen-rich atmosphere.

8.
ACS Appl Mater Interfaces ; 13(45): 54551-54560, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34726886

RESUMEN

Strong light localization inside the nanoscale gaps provides remarkable opportunities for creation of various medical and biosensing platforms stimulating an active search for inexpensive and easily scalable fabrication at a sub-100 nm resolution. In this paper, self-organized laser-induced periodic surface structures (LIPSSs) with the shortest ever reported periodicity of 70 ± 10 nm were directly imprinted on the crystalline Si wafer upon its direct femtosecond-laser ablation in isopropanol. Appearance of such a nanoscale morphology was explained by the formation of a periodic topography on the surface of photoexcited Si driven by interference phenomena as well as subsequent down-scaling of the imprinted grating period via Rayleigh-Taylor hydrodynamic instability. The produced deep subwavelength LIPSSs demonstrate strong anisotropic anti-reflection performance, ensuring efficient delivery of the incident far-field radiation to the electromagnetic "hot spots" localized in the Si nanogaps. This allows realization of various optical biosensing platforms operating via strong interactions of quantum emitters with nanoscale light fields. The demonstrated 80-fold enhancement of spontaneous emission from the attached nanolayer of organic dye molecules and in situ optical tracing of catalytic molecular transformations substantiate bare and metal-capped deep subwavelength Si LIPSSs as a promising inexpensive multifunctional biosensing platform.


Asunto(s)
Técnicas Biosensibles , Rayos Láser , Silicio/química , 2-Propanol/química , Hidrodinámica , Tamaño de la Partícula , Propiedades de Superficie
9.
Nano Lett ; 21(23): 10019-10025, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34802241

RESUMEN

Halide perovskite nanowire-based lasers have become a powerful tool for modern nanophotonics, being deeply subwavelength in cross-section and demonstrating low-threshold lasing within the whole visible spectral range owing to the huge gain of material even at room temperature. However, their emission directivity remains poorly controlled because of the efficient outcoupling of radiation through their subwavelength facets working as pointlike light sources. Here, we achieve directional lasing from a single perovskite CsPbBr3 nanowire by imprinting a nanograting on its surface, which provides stimulated emission outcoupling to its vertical direction with a divergence angle around 2°. The nanopatterning is carried out by the high-throughput laser ablation method, which preserves the luminescent properties of the material that is typically deteriorated after processing via conventional lithographic approaches. Moreover, nanopatterning of the perovskite nanowire is found to decrease the number of the lasing modes with a 2-fold increase of the quality factor of the remaining modes.

10.
Nanomaterials (Basel) ; 11(2)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557328

RESUMEN

Here, we present the single-step laser-assisted fabrication of anti-reflective hierarchical surface textures on silicon locally functionalized with a photoluminescent (PL) molecular nanolayer. Using femtosecond-laser ablation of commercial crystalline Si wafers placed under a layer of a solution containing rhodamine 6G (R6G) a triethoxysilyl derivative, we fabricated ordered arrays of microconical protrusions with self-organized nanoscale surface morphology. At the same time, the laser-induced temperature increase facilitated surface activation and local binding of the R6G derivative to the as-fabricated nanotextured surface. The produced dual-scale surface textures showed remarkable broadband (visible to near-IR) light-absorbing properties with an averaged reflectivity of around 1%, and the capping molecular nanolayer demonstrated a strongly enhanced PL yield. By performing a pH sensing test using the produced nanotextured substrate, we confirmed the retention of sensory properties of the molecules attached to the surface and validated the potential applicability of the high-performing liquid-assisted laser processing as a key technology for the development of innovative multifunctional sensing devices in which the textured substrate (e.g., ultra-black semiconductor) plays a dual role as a support and PL signal amplifier.

11.
Materials (Basel) ; 13(22)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238502

RESUMEN

Amorphous silicon (α-Si) film present an inexpensive and promising material for optoelectronic and nanophotonic applications. Its basic optical and optoelectronic properties are known to be improved via phase transition from amorphous to polycrystalline phase. Infrared femtosecond laser radiation can be considered to be a promising nondestructive and facile way to drive uniform in-depth and lateral crystallization of α-Si films that are typically opaque in UV-visible spectral range. However, so far only a few studies reported on use of near-IR radiation for laser-induced crystallization of α-Si providing less information regarding optical properties of the resultant polycrystalline Si films demonstrating rather high surface roughness. The present work demonstrates efficient and gentle single-pass crystallization of α-Si films induced by their direct irradiation with near-IR femtosecond laser pulses coming at sub-MHz repetition rate. Comprehensive analysis of morphology and composition of laser-annealed films by atomic-force microscopy, optical, micro-Raman and energy-dispersive X-ray spectroscopy, as well as numerical modeling of optical spectra, confirmed efficient crystallization of α-Si and high-quality of the obtained films. Moreover, we highlight localized laser-induced crystallization of α-Si as a promising way for optical information encryption, anti-counterfeiting and fabrication of micro-optical elements.

12.
Small ; 16(19): e2000410, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32309903

RESUMEN

Nanophotonics based on resonant nanostructures and metasurfaces made of halide perovskites have become a prospective direction for efficient light manipulation at the subwavelength scale in advanced photonic designs. One of the main challenges in this field is the lack of large-scale low-cost technique for subwavelength perovskite structures fabrication preserving highly efficient luminescence. Here, unique properties of halide perovskites addressed to their extremely low thermal conductivity (lower than that of silica glass) and high defect tolerance to apply projection femtosecond laser lithography for nanofabrication with precise spatial control in all three dimensions preserving the material luminescence efficiency are employed. Namely, with CH3 NH3 PbI3 perovskite highly ordered nanoholes and nanostripes of width as small as 250 nm, metasurfaces with periods less than 400 nm, and nanowire lasers as thin as 500 nm, corresponding to the state-of-the-art in multistage expensive lithographical methods are created. Remarkable performance of the developed approach allows to demonstrate a number of advanced optical applications, including morphology-controlled photoluminescence yield, structural coloring, optical- information encryption, and lasing.

13.
Nanomaterials (Basel) ; 10(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878209

RESUMEN

We report an easy-to-implement device for surface-enhanced Raman scattering (SERS)-based detection of various analytes dissolved in water droplets at trace concentrations. The device combines an analyte-enrichment system and SERS-active sensor site, both produced via inexpensive and high-performance direct femtosecond (fs)-laser printing. Fabricated on a surface of water-repellent polytetrafluoroethylene substrate as an arrangement of micropillars, the analyte-enrichment system supports evaporating water droplet in the Cassie-Baxter superhydrophobic state, thus ensuring delivery of the dissolved analyte molecules towards the hydrophilic SERS-active site. The efficient pre-concentration of the analyte onto the sensor site based on densely arranged spiky plasmonic nanotextures results in its subsequent label-free identification by means of SERS spectroscopy. Using the proposed device, we demonstrate reliable SERS-based fingerprinting of various analytes, including common organic dyes and medical drugs at ppb concentrations. The proposed device is believed to find applications in various areas, including label-free environmental monitoring, medical diagnostics, and forensics.

14.
Nanomaterials (Basel) ; 9(10)2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31547003

RESUMEN

We demonstrate a multi-purpose plasmonic sensor based on a nanovoid array fabricated via inexpensive and highly-reproducible direct femtosecond laser patterning of thin glass-supported Au films. The proposed nanovoid array exhibits near-IR surface plasmon (SP) resonances, which can be excited under normal incidence and optimised for specific applications by tailoring the array periodicity, as well as the nanovoid geometric shape. The fabricated SP sensor offers competitive sensitivity of ≈ 1600 nm/RIU at a figure of merit of 12 in bulk refractive index tests, as well as allows for identification of gases and ultra-thin analyte layers, making the sensor particularly useful for common bioassay experiments. Moreover, isolated nanovoids support strong electromagnetic field enhancement at lattice SP resonance wavelength, allowing for label-free molecular identification via surface-enhanced vibration spectroscopy.

15.
ACS Nano ; 13(4): 4140-4147, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30844247

RESUMEN

Halide-perovskite microlasers have demonstrated fascinating performance owing to their low-threshold lasing at room temperature and low-cost fabrication. However, being synthesized chemically, controllable fabrication of such microlasers remains challenging, and it requires template-assisted growth or complicated nanolithography. Here, we suggest and implement an approach for the fabrication of microlasers by direct laser ablation of a thin film on glass with donut-shaped femtosecond laser beams. The fabricated microlasers represent MAPbBr xI y microdisks with 760 nm thickness and diameters ranging from 2 to 9 µm that are controlled by a topological charge of the vortex beam. As a result, this method allows one to fabricate single-mode perovskite microlasers operating at room temperature in a broad spectral range (550-800 nm) with Q-factors up to 5500. High-speed fabrication and reproducibility of microdisk parameters, as well as a precise control of their location on a surface, make it possible to fabricate centimeter-sized arrays of such microlasers. Our finding is important for direct writing of fully integrated coherent light sources for advanced photonic and optoelectronic circuitry.

16.
Nanoscale ; 10(45): 21414-21424, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30427036

RESUMEN

Controllable targeted deposition of an analyte dissolved in a liquid drop evaporating on a superhydrophobic surface has recently emerged as a promising concentrator approach with various applications ranging from ultrasensitive bioidentification to DNA molecule sorting. Here, we demonstrate that surface textures with non-uniform wettability fabricated using direct easy-to-implement femtosecond-pulse filament-assisted ablation of polytetrafluoroethylene substrates can be used to concentrate and deposit an analyte at a designated location out of a water droplet. The proposed surface textures contain a central superhydrophilic trap surrounded by superhydrophobic periodically arranged pillars with a hierarchical roughness. By optimizing the arrangement and geometry of the central trap and the surrounding superhydrophobic textures, the analyte dissolved in a 5 µL water drop was fixed onto a 90 × 90 µm2 target. The proposed textures provide a concentration factor of 103, an order of magnitude higher than those for the previously reported surface textures. This promising ultrasensitive versatile platform allows the detection of fingerprints of the deposited analyte via surface-enhanced spectroscopy techniques (Raman scattering or photoluminescence) at an estimated detection threshold better than 10-15 mol L-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA