Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(7): 5713-5729, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35224332

RESUMEN

A camphorsulfonic acid-mediated one-pot tandem consecutive approach was developed to synthesize functionalized indole and 2-quinolone derivatives from the Ugi four-component reaction by switching solvents. A reaction of the Ugi adduct in an aprotic solvent undergoes 5-exo-trig cyclization to form an indole ring. In a protic solvent, however, the Ugi adduct undergoes an alkyne-carbonyl metathesis reaction to form a 2-quinolone ring.

2.
ACS Nano ; 13(5): 5397-5409, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31017763

RESUMEN

To maximize light coupling into the active layer, plasmonic nanostructures have been incorporated into both active layers of organic solar cells (OSCs) and perovskite solar cells (PSCs) with the aim of increasing light absorption, but reports have shown controversial results in electrical characteristics. In this work, we introduce a core-bishell concept to build plasmonic nanoparticles (NPs) with metal-inorganic semiconductor-organic semiconductor nanostructure. Specifically, Ag NPs were decorated with a titania/benzoic-acid-fullerene bishell (Ag@TiO2@Pa), which enables the NPs to be compatible with fullerene acceptors or a perovskite absorber. Moreover, coating the Ag@TiO2 NP with a fullerene shell can activate efficient plasmon-exciton coupling and eliminate the charge accumulation, thus facilitating exciton dissociation and reducing the monomolecular recombination. The improved light absorption and enhanced carrier extraction of devices with Ag@TiO2@Pa nanoparticles are responsible for the improved short-circuit current and fill factor, respectively. On the basis of the synergistic effects (optical and electrical), a series of plasmonic OSCs exhibited enhancement of 12.3-20.7% with a maximum power conversion efficiency of 13.0%, while the performance of plasmonic PSCs also showed an enhancement by 10.2% from 18.4% to 20.2%. This core-bishell design concept of plasmonic nanostructures demonstrates a general approach to improving the photovoltaic performance with both optical and electrical contributions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...