Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2404958, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258821

RESUMEN

Improving the utilization of active sites in carbon catalysts is significant for various catalytic reactions, but still challenging, mainly due to the lack of strategies for controllable introduction of active dopants. Herein, a novel "Ar plasma etching-NH3 annealing" strategy is developed to regulate the position of active N sites, while maintaining the same nitrogen species and contents. Theoretical and experimental results reveal that the edge-hosted-N doped carbon nanotubes (E-N-CNT), with only 0.29 at.% N content, show great affinity to peroxymonosulfate (PMS), and exhibit excellent Fenton-like activity by generating singlet oxygen (1O2), which can reach as high as 410 times higher than the pristine CNT. The remarkable utilization of edge-hosted nitrogen atom is further verified by the edge-hosted-N enriched carbocatalyst, which shows superior capability for 4-chlorophenol degradation with a turnover frequency (TOF) value as high as 3.82 min-1, and the impressive TOF value can even surpass those of single-atom catalysts. This work proposes a controllable position regulation of active sites to improve atom utilization, which provides a new insight into the design of excellent Fenton-like catalysts with remarkable atom utilization efficiency.

2.
Proc Natl Acad Sci U S A ; 121(38): e2401175121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39250664

RESUMEN

Singlet oxygen (1O2) is important in the environmental remediation field, however, its efficient production has been severely hindered by the ultrafast self-quenching of the as-generated radical precursors in the Fenton-like reactions. Herein, we elaborately designed lamellar anthraquinone-based covalent organic frameworks (DAQ-COF) with sequential localization of the active sites (C═O) at molecular levels for visible-light-assisted peroxymonosulfate (PMS) activation. Theoretical and experimental results revealed that the radical precursors (SO5·-) were formed in the nearby layers with the migration distance less than 0.34 nm, via PMS donating electrons to the photogenerated holes. This interlayer synergistic effect eventually led to ultraefficient 1O2 production (14.8 µM s-1), which is 12 times that of the highest reported catalyst. As an outcome, DAQ-COF enabled the complete degradation of bisphenol A in 5 min with PMS under natural sunlight irradiation. This interlayer synergistic concept represents an innovative and effective strategy to increase the utilization efficiency of ultrashort-lived radical precursors, providing inspirations for subtle structural construction of Fenton-like catalysts.

6.
Sci Total Environ ; 916: 170185, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244619

RESUMEN

The preparation of waste plastics-derived catalysts is an effective strategy for the waste reclamation. However, plastic-derived material is unsuitable for wastewater purification due to its small specific surface area (SSA) and inadequate active sites (such as N/O sites). Herein, we synthesized graphene-like nanosheets using g-C3N4 as the self-sacrificing soft template and plastic as the carbon precursor. Consequently, this strategy greatly promoted the efficiencies of the emerging organic pollutants degradation with the SSA and N content of the plastic-derived biochar increasing up to 1043.4 m2/g and 17.53 at.%, respectively. In detail, 100 % sulfadiazine (SD) removal could be achieved in 180 s via the activation of peroxymonosulfate (PMS) and the catalytic activity is far higher than previous research. Mechanism experiments corroborated that such a striking performance was attributed to the generation of SO4•-, O2•- and 1O2. Meanwhile, kinds of plastic precursors, even medical waste (i.e., masks, gauze, operating caps and degreasing cotton) were also applicable. And the practical application of the plastic-derived catalyst was further demonstrated by treating pollutants in a continuous flow mode with in situ fabricated membrane. This work provides valuable insights into waste plastics processing and water pollutants removal.

7.
Sci Total Environ ; 902: 166121, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562621

RESUMEN

Carbon-driven persulfate (PDS)-based Fenton-like reactions have been widely viewed as prospective strategies to cope with the water pollution. However, high cost, harsh condition and complex modification processes are usually required to boost the catalytic activities of carbocatalysts. Herein, we proposed an ultrafast, energy-efficient, and convenient approach to convert various low-performance carbon materials into highly efficient catalysts by microwave treatment in just 1 min without any other tedious treatment. This process only requires 57 kJ/g energy input, 5 orders of magnitude lower than the traditional calcination process. The catalytic performance of microwave-treated materials could increase by more than 380 times, which is even better than those of the single-atom catalysts. Moreover, DFT calculations and QSARs analyses reveal that the negatively charged carboxyl group is not conducive to the adsorption of PDS (S2O82-) due to electrostatic repulsion, and also increases the work function of the carbocatalysts, which hinders the electron transfer process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...