Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Commun Biol ; 7(1): 206, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378967

RESUMEN

It is urgent to identify novel early diagnostic markers and therapeutic targets for non-small-cell lung cancer (NSCLC), which accounts for 85% of lung cancer cases and has a 5-year survival rate of 4-17%. Here, chromatin immunoprecipitation (ChIP) was used to identify DNA‒protein interactions, RNA methylation was determined by methylated RNA immunoprecipitation (MeRIP), RNA stability was tested by an RNA decay assay. We showed that RAD21, a member of the cohesin complex, is upregulated in NSCLC tissues and cell lines and found to be an independent prognostic factor for overall survival (OS) of NSCLC patients. Mechanistically, the cohesin loading factor Nipped-B-Like Protein (NIPBL) promoted RAD21 gene transcription by enhancing histone H3 lysine 27 (H3K27) demethylation via recruiting lysine demethylase 6B (KDM6B) to the RAD21 gene promoter. RAD21 enhanced phosphatidylinositol 3-kinase (PI3K) gene transcription, and NIPBL reversed the effect of enhancer of zeste 2; catalytic subunit of polycomb repressive complex 2 (EZH2) on RAD21-mediated PI3K gene transcription by disrupting the association between EZH2 and RAD21. Moreover, NIPBL level was increased by stabilization of its transcripts through mRNA methylation. These findings highlight the oncogenic role of RAD21 in NSCLC and suggest its use as a potential diagnostic marker and therapeutic target for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasa , Lisina , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética
3.
Transl Lung Cancer Res ; 10(12): 4511-4525, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35070757

RESUMEN

BACKGROUND: The primary aim of this study was to investigate the prognostic value of peripheral blood lymphocyte subsets in non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs). METHODS: From 2018 to 2019, 82 patients diagnosed with stage IIIB-IV NSCLC at Zhejiang Cancer Hospital were recruited for this study. Peripheral blood lymphocyte subsets of NSCLC patients were analyzed using flow cytometry before and after ICI treatment. The relationship between the percentage of peripheral blood lymphocyte subsets, clinicopathological features, progression-free survival (PFS), and overall survival (OS) was identified by correlation heat map, Kaplan-Meier curve, log-rank test, and Cox regression analysis. RESULTS: The CD4/CD8 ratio and the percentage of B cells was decreased after ICI treatment. Furthermore, the percentage of CD3+ T cells, natural killer (NK) cells, and natural killer T (NKT) cells before ICI treatment was associated with brain metastases, the proportion of CD3+CD4+ T cells before ICI treatment was related to epidermal growth factor receptor (EGFR) status, the CD4/CD8 ratio before ICI treatment was correlated to pathology, the ratio of B cells before ICI treatment was related to therapeutic regimen, and the percentage of NKT cells before ICI treatment was associated with use of radiotherapy. Furthermore, univariate survival analysis revealed that low percentage of B cells forecasted a poor OS for NSCLC patients with ICI treatment. In addition, the nomogram developed by percentages of peripheral blood lymphocyte subsets could determine survival probability and survival time of NSCLC patients with immunotherapy. CONCLUSIONS: ICI treatment induced changes in the percentage of peripheral blood lymphocyte subsets, which had prognostic value for brain metastases, radiotherapy, EGFR status, pathology, and therapeutic regimen, along with prognostic value, for NSCLC patients treated with ICIs.

4.
Nat Commun ; 10(1): 282, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30655546

RESUMEN

Failure of neural tube closure results in severe birth defects and can be induced by high glucose levels resulting from maternal diabetes. MARCKS is required for neural tube closure, but the regulation and of its biological activity and function have remained elusive. Here, we show that high maternal glucose induced MARCKS acetylation at lysine 165 by the acetyltransferase Tip60, which is a prerequisite for its phosphorylation, whereas Sirtuin 2 (SIRT2) deacetylated MARCKS. Phosphorylated MARCKS dissociates from organelles, leading to mitochondrial abnormalities and endoplasmic reticulum stress. Phosphorylation dead MARCKS (PD-MARCKS) reversed maternal diabetes-induced cellular organelle stress, apoptosis and delayed neurogenesis in the neuroepithelium and ameliorated neural tube defects. Restoring SIRT2 expression in the developing neuroepithelium exerted identical effects as those of PD-MARCKS. Our studies reveal a new regulatory mechanism for MARCKS acetylation and phosphorylation that disrupts neurulation under diabetic conditions by diminishing the cellular organelle protective effect of MARCKS.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Enfermedades Fetales/patología , Lisina Acetiltransferasa 5/metabolismo , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/metabolismo , Defectos del Tubo Neural/patología , Sirtuina 2/metabolismo , Transactivadores/metabolismo , Acetilación , Animales , Glucemia/metabolismo , Línea Celular , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Embrión de Mamíferos , Estrés del Retículo Endoplásmico , Femenino , Enfermedades Fetales/sangre , Enfermedades Fetales/etiología , Humanos , Lisina Acetiltransferasa 5/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/patología , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/genética , Defectos del Tubo Neural/etiología , Neurulación , Fosforilación , Embarazo , Embarazo en Diabéticas/sangre , Sirtuina 2/genética , Estreptozocina/toxicidad , Transactivadores/genética
5.
Pediatr Res ; 83(1-2): 275-282, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29016556

RESUMEN

Pregestational maternal diabetes induces congenital heart defects (CHDs). Cardiac dysfunction after palliative surgical procedures contributes to the high mortality of CHD patients. Autologous or allogeneic stem cell therapies are effective for improving cardiac function in animal models and clinical trials. c-kit+ cardiac progenitor cells (CPCs), the most recognized CPCs, have the following basic properties of stem cells: self-renewal, multicellular clone formation, and differentiation into multiple cardiac lineages. However, there is ongoing debate regarding whether c-kit+ CPCs can give rise to sufficient cardiomyocytes. A new hypothesis to address the beneficial effect of c-kit+ CPCs is that these cells stimulate endogenous cardiac cells through a paracrine function in producing a robust secretome and exosomes. The values of other cardiac CPCs, including Sca1+ CPCs and cardiosphere-derived cells, are beginning to be revealed. These cells may be better choices than c-kit+ CPCs for generating cardiomyocytes. Adult mesenchymal stem cells are considered immune-incompetent and effective for improving cardiac function. Autologous CPC therapy may be limited by the observation that maternal diabetes adversely affects the biological function of embryonic stem cells and CPCs. Future studies should focus on determining the mechanistic action of these cells, identifying new CPC markers, selecting highly effective CPCs, and engineering cell-free products.


Asunto(s)
Diabetes Gestacional/terapia , Células Madre Embrionarias/citología , Cardiopatías Congénitas/terapia , Miocitos Cardíacos/citología , Trasplante de Células Madre , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Femenino , Trasplante de Corazón , Humanos , Sistema Inmunológico , Ratones , Células Madre Multipotentes/citología , Embarazo , Preñez , Proteínas Proto-Oncogénicas c-kit/metabolismo
6.
Nat Commun ; 8: 15182, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28474670

RESUMEN

Gene deletion-induced autophagy deficiency leads to neural tube defects (NTDs), similar to those in diabetic pregnancy. Here we report the key autophagy regulators modulated by diabetes in the murine developing neuroepithelium. Diabetes predominantly leads to exencephaly, induces neuroepithelial cell apoptosis and suppresses autophagy in the forebrain and midbrain of NTD embryos. Deleting the Prkca gene, which encodes PKCα, reverses diabetes-induced autophagy impairment, cellular organelle stress and apoptosis, leading to an NTD reduction. PKCα increases the expression of miR-129-2, which is a negative regulator of autophagy. miR-129-2 represses autophagy by directly targeting PGC-1α, a positive regulator for mitochondrial function, which is disturbed by maternal diabetes. PGC-1α supports neurulation by stimulating autophagy in neuroepithelial cells. These findings identify two negative autophagy regulators, PKCα and miR-129-2, which mediate the teratogenicity of hyperglycaemia leading to NTDs. We also reveal a function for PGC-1α in embryonic development through promoting autophagy and ameliorating hyperglycaemia-induced NTDs.


Asunto(s)
Autofagia/genética , Sistema Nervioso Central/embriología , MicroARNs/genética , Defectos del Tubo Neural/genética , Embarazo en Diabéticas , Proteína Quinasa C-alfa/genética , Animales , Línea Celular , Diabetes Mellitus Experimental , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Tubo Neural/anomalías , Células Neuroepiteliales/citología , Neurulación/genética , Estrés Oxidativo/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Embarazo , Estreptozocina
7.
Toxicol Sci ; 158(2): 275-285, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28482072

RESUMEN

Endoplasmic reticulum (ER) stress has been implicated in the development of maternal diabetes-induced neural tube defects (NTDs). ER stress-induced C/EBP homologous protein (CHOP) plays an important role in the pro-apoptotic execution pathways. However, the molecular mechanism underlying ER stress- and CHOP-induced neuroepithelium cell apoptosis in diabetic embryopathy is still unclear. Deletion of the Chop gene significantly reduced maternal diabetes-induced NTDs. CHOP deficiency abrogated maternal diabetes-induced mitochondrial dysfunction and neuroepithelium cell apoptosis. Further analysis demonstrated that CHOP repressed the expression of peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α), an essential regulator for mitochondrial biogenesis and function. Both CHOP deficiency in vivo and knockdown in vitro restore high glucose-suppressed PGC-1α expression. In contrast, CHOP overexpression mimicked inhibition of PGC-1α by high glucose. In response to the ER stress inducer tunicamycin, PGC-1α expression was decreased, whereas the ER stress inhibitor 4-phenylbutyric acid blocked high glucose-suppressed PGC-1α expression. Moreover, maternal diabetes in vivo and high glucose in vitro promoted the interaction between CHOP and the PGC-1α transcriptional regulator CCAAT/enhancer binding protein-ß (C/EBPß), and reduced C/EBPß binding to the PGC-1α promoter leading to markedly decrease in PGC-1α expression. Together, our findings support the hypothesis that maternal diabetes-induced ER stress increases CHOP expression which represses PGC-1α through suppressing the C/EBPß transcriptional activity, subsequently induces mitochondrial dysfunction and ultimately results in NTDs.


Asunto(s)
Diabetes Gestacional/fisiopatología , Estrés del Retículo Endoplásmico/fisiología , Enfermedades Fetales/fisiopatología , Mitocondrias/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/antagonistas & inhibidores , Factor de Transcripción CHOP/fisiología , Animales , Apoptosis/genética , Línea Celular , Dimerización , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Defectos del Tubo Neural/genética , Embarazo , Factor de Transcripción CHOP/genética , Tunicamicina/farmacología
8.
Free Radic Biol Med ; 96: 234-44, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27130031

RESUMEN

Pregestational diabetes disrupts neurulation leading to neural tube defects (NTDs). Oxidative stress resulting from reactive oxygen species (ROS) plays a central role in the induction of NTD formation in diabetic pregnancies. We aimed to determine whether mitochondrial dysfunction increases ROS production leading to oxidative stress and diabetic embryopathy. Overexpression of the mitochondrion-specific antioxidant enzyme superoxide dismutase 2 (SOD2) in a transgenic (Tg) mouse model significantly reduced maternal diabetes-induced NTDs. SOD2 overexpression abrogated maternal diabetes-induced mitochondrial dysfunction by inhibiting mitochondrial translocation of the pro-apoptotic Bcl-2 family members, reducing the number of defective mitochondria in neuroepithelial cells, and decreasing mitochondrial membrane potential. Furthermore, SOD2 overexpression blocked maternal diabetes-increased ROS production by diminishing dihydroethidium staining signals in the developing neuroepithelium, and reducing the levels of nitrotyrosine-modified proteins and lipid hydroperoxide level in neurulation stage embryos. SOD2 overexpression also abolished maternal diabetes-induced endoplasmic reticulum stress. Finally, caspase-dependent neuroepithelial cell apoptosis enhanced by oxidative stress was significantly reduced by SOD2 overexpression. Thus, our findings support the hypothesis that mitochondrial dysfunction in the developing neuroepithelium enhances ROS production, which leads to oxidative stress and endoplasmic reticulum (ER) stress. SOD2 overexpression blocks maternal diabetes-induced oxidative stress and ER stress, and reduces the incidence of NTDs in embryos exposed to maternal diabetes.


Asunto(s)
Diabetes Gestacional/genética , Enfermedades Fetales/genética , Defectos del Tubo Neural/genética , Superóxido Dismutasa/genética , Animales , Antioxidantes/metabolismo , Apoptosis/genética , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patología , Estrés del Retículo Endoplásmico/genética , Femenino , Enfermedades Fetales/metabolismo , Enfermedades Fetales/patología , Regulación de la Expresión Génica , Herencia Materna/genética , Ratones , Mitocondrias/genética , Mitocondrias/patología , Defectos del Tubo Neural/fisiopatología , Embarazo , Embarazo en Diabéticas/genética , Embarazo en Diabéticas/metabolismo , Embarazo en Diabéticas/patología
9.
Am J Obstet Gynecol ; 215(3): 366.e1-366.e10, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27038779

RESUMEN

BACKGROUND: Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects remain largely unknown. OBJECTIVE: We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects. STUDY DESIGN: A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. RESULTS: Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin protein; endoplasmic reticulum chaperone gene expression; and XBP1 messenger RNA splicing, as well as increased cleaved caspase 3 and 8 in embryonic hearts. Furthermore, maternal type 2 diabetes mellitus triggered excessive apoptosis in ventricular myocardium, endocardial cushion, and outflow tract of the embryonic heart. CONCLUSION: Similar to those observations in type 1 diabetic embryopathy, maternal type 2 diabetes mellitus causes heart defects in the developing embryo manifested with oxidative stress, endoplasmic reticulum stress, and excessive apoptosis in heart cells.


Asunto(s)
Apoptosis , Diabetes Gestacional , Estrés del Retículo Endoplásmico , Cardiopatías Congénitas/embriología , Estrés Oxidativo , Animales , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Diabetes Mellitus Experimental , Embrión de Mamíferos , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Femenino , Cardiopatías Congénitas/patología , Proteínas de Choque Térmico/metabolismo , Peroxidación de Lípido , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Fosforilación , Embarazo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Empalme del ARN , Factor de Transcripción CHOP/metabolismo , Proteína 1 de Unión a la X-Box/genética
10.
Am J Obstet Gynecol ; 215(3): 368.e1-368.e10, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26979632

RESUMEN

BACKGROUND: Maternal diabetes increases the risk of neural tube defects in offspring. Our previous study demonstrated that the green tea polyphenol, Epigallocatechin gallate, inhibits high glucose-induced neural tube defects in cultured embryos. However, the therapeutic effect of Epigallocatechin gallate on maternal diabetes-induced neural tube defects is still unclear. OBJECTIVE: We aimed to examine whether Epigallocatechin gallate treatment can reduce maternal diabetes-induced DNA methylation and neural tube defects. STUDY DESIGN: Nondiabetic and diabetic pregnant mice at embryonic day 5.5 were given drinking water with or without 1 or 10 µM Epigallocatechin gallate. At embryonic day 8.75, embryos were dissected from the visceral yolk sac for the measurement of the levels and activity of DNA methyltransferases, the levels of global DNA methylation, and methylation in the CpG islands of neural tube closure essential gene promoters. embryonic day 10.5 embryos were examined for neural tube defect incidence. RESULTS: Epigallocatechin gallate treatment did not affect embryonic development because embryos from nondiabetic dams treated with Epigallocatechin gallate did not exhibit any neural tube defects. Treatment with 1 µM Epigallocatechin gallate did not reduce maternal diabetes-induced neural tube defects significantly. Embryos from diabetic dams treated with 10 µM Epigallocatechin gallate had a significantly lower neural tube defect incidence compared with that of embryos without Epigallocatechin gallate treatment. Epigallocatechin gallate reduced neural tube defect rates from 29.5% to 2%, an incidence that is comparable with that of embryos from nondiabetic dams. Ten micromoles of Epigallocatechin gallate treatment blocked maternal diabetes-increased DNA methyltransferases 3a and 3b expression and their activities, leading to the suppression of global DNA hypermethylation. Additionally, 10 µM Epigallocatechin gallate abrogated maternal diabetes-increased DNA methylation in the CpG islands of neural tube closure essential genes, including Grhl3, Pax3, and Tulp3. CONCLUSION: Epigallocatechin gallate reduces maternal diabetes-induced neural tube defects formation and blocks the enhanced expression and activity of DNA methyltransferases, leading to the suppression of DNA hypermethylation and the restoration of neural tube closure essential gene expression. These observations suggest that Epigallocatechin gallate supplements could mitigate the teratogenic effects of hyperglycemia on the developing embryo and prevent diabetes-induced neural tube defects.


Asunto(s)
Catequina/análogos & derivados , Metilación de ADN/efectos de los fármacos , Diabetes Gestacional , Defectos del Tubo Neural/prevención & control , Animales , Catequina/farmacología , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/genética , Diabetes Mellitus Experimental , Embrión de Mamíferos/metabolismo , Femenino , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Ratones Endogámicos C57BL , Defectos del Tubo Neural/genética , Factor de Transcripción PAX3/genética , Embarazo , Proteínas/genética , Factores de Transcripción/genética , ADN Metiltransferasa 3B
11.
BMC Genomics ; 16: 971, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26582363

RESUMEN

BACKGROUND: Gynogenesis is one of unisexual reproduction modes in vertebrates, and produces all-female individuals with identical genetic background. In sexual reproduction vertebrates, the roles of primordial germ cells on sexual dimorphism and gonadal differentiation have been largely studied, and two distinct functional models have been proposed. However, the role of primordial germ cells remains unknown in unisexual animals, and it is also unclear whether the functional models in sexual reproduction animals are common in unisexual animals. RESULTS: To solve these puzzles, we attempt to utilize the gynogenetic superiority of polyploid Carassius gibelio to create a complete germ cell-depleted gonad model by a similar morpholino-mediated knockdown approach used in other examined sexual reproduction fishes. Through the germ cell-depleted gonad model, we have performed comprehensive and comparative transcriptome analysis, and revealed a complete alteration of sex-biased gene expression. Moreover, the expression alteration leads to up-regulation of testis-biased genes and down-regulation of ovary-biased genes, and results in the occurrence of sterile all-males with testis-like gonads and secondary sex characteristics in the germ cell-depleted gynogenetic Carassius gibelio. CONCLUSIONS: Our current results have demonstrated that unisexual gynogenetic embryos remain keeping male sex determination information in the genome, and the complete depletion of primordial germ cells in the all-female fish leads to sex-biased gene expression alteration and sterile all-male occurrence.


Asunto(s)
Cyprinidae/genética , Cyprinidae/fisiología , Óvulo/citología , Caracteres Sexuales , Espermatozoides/citología , Transcriptoma/fisiología , Animales , Cyprinidae/crecimiento & desarrollo , Femenino , Masculino , Óvulo/metabolismo , Fenotipo , Poliploidía , Diferenciación Sexual , Espermatozoides/metabolismo , Testículo/citología , Testículo/fisiología
12.
Biochem Biophys Res Commun ; 467(2): 179-84, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26453010

RESUMEN

Maternal diabetes-induced birth defects remain a significant health problem. Studying the effect of natural compounds with antioxidant properties and minimal toxicities on diabetic embryopathy may lead to the development of new and safe dietary supplements. Punicalagin is a primary polyphenol found in pomegranate juice, which possesses antioxidant, anti-inflammatory and anti-tumorigenic properties, suggesting a protective effect of punicalagin on diabetic embryopathy. Here, we examined whether punicalagin could reduce high glucose-induced neural tube defects (NTDs), and if this rescue occurs through blockage of cellular stress and caspase activation. Embryonic day 8.5 (E8.5) mouse embryos were cultured for 24 or 36 h with normal (5 mM) glucose or high glucose (16.7 mM), in presence or absence of 10 or 20 µM punicalagin. 10 µM punicalagin slightly reduced NTD formation under high glucose conditions; however, 20 µM punicalagin significantly inhibited high glucose-induced NTD formation. Punicalagin suppressed high glucose-induced lipid peroxidation marker 4-hydroxynonenal, nitrotyrosine-modified proteins, and lipid peroxides. Moreover, punicalagin abrogated endoplasmic reticulum stress by inhibiting phosphorylated protein kinase ribonucleic acid (RNA)-like ER kinase (p-PERK), phosphorylated inositol-requiring protein-1α (p-IRE1α), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP) and x-box binding protein 1 (XBP1) mRNA splicing. Additionally, punicalagin suppressed high glucose-induced caspase 3 and caspase 8 cleavage. Punicalagin reduces high glucose-induced NTD formation by blocking cellular stress and caspase activation. These observations suggest punicalagin supplements could mitigate the teratogenic effects of hyperglycemia in the developing embryo, and possibly prevent diabetes-induced NTDs.


Asunto(s)
Antioxidantes/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Taninos Hidrolizables/farmacología , Defectos del Tubo Neural/prevención & control , Tubo Neural/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Aldehídos/metabolismo , Animales , Caspasas/genética , Caspasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Regulación de la Expresión Génica , Glucosa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Tubo Neural/crecimiento & desarrollo , Tubo Neural/metabolismo , Defectos del Tubo Neural/inducido químicamente , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Fosforilación , Embarazo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción del Factor Regulador X , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 1 de Unión a la X-Box , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
13.
Circ Cardiovasc Genet ; 8(5): 665-76, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26232087

RESUMEN

BACKGROUND: Oxidative stress is manifested in embryos exposed to maternal diabetes mellitus, yet specific mechanisms for diabetes mellitus-induced heart defects are not defined. Gene deletion of intermediates of Wingless-related integration (Wnt) signaling causes heart defects similar to those observed in embryos from diabetic pregnancies. We tested the hypothesis that diabetes mellitus-induced oxidative stress impairs Wnt signaling, thereby causing heart defects, and that these defects can be rescued by transgenic overexpression of the reactive oxygen species scavenger superoxide dismutase 1 (SOD1). METHODS AND RESULTS: Wild-type (WT) and SOD1-overexpressing embryos from nondiabetic WT control dams and nondiabetic/diabetic WT female mice mated with SOD1 transgenic male mice were analyzed. No heart defects were observed in WT and SOD1 embryos under nondiabetic conditions. WT embryos of diabetic dams had a 26% incidence of cardiac outlet defects that were suppressed by SOD1 overexpression. Insulin treatment reduced blood glucose levels and heart defects. Diabetes mellitus increased superoxide production, canonical Wnt antagonist expression, caspase activation, and apoptosis and suppressed cell proliferation. Diabetes mellitus suppressed Wnt signaling intermediates and Wnt target gene expression in the embryonic heart, each of which were reversed by SOD1 overexpression. Hydrogen peroxide and peroxynitrite mimicked the inhibitory effect of high glucose on Wnt signaling, which was abolished by the SOD1 mimetic, tempol. CONCLUSIONS: The oxidative stress of diabetes mellitus impairs Wnt signaling and causes cardiac outlet defects that are rescued by SOD1 overexpression. This suggests that targeting of components of the Wnt5a signaling pathway may be a viable strategy for suppression of congenital heart defects in fetuses of diabetic pregnancies.


Asunto(s)
Cardiopatías Congénitas/genética , Estrés Oxidativo , Embarazo en Diabéticas , Superóxido Dismutasa/metabolismo , Proteínas Wnt/metabolismo , Animales , Apoptosis , Complicaciones de la Diabetes/genética , Diabetes Mellitus Experimental , Femenino , Expresión Génica , Corazón/embriología , Cardiopatías Congénitas/enzimología , Cardiopatías Congénitas/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Masculino , Ratones , Ratones Transgénicos , Ácido Peroxinitroso/farmacología , Embarazo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Proteínas Wnt/genética , Proteína Wnt-5a
14.
Int J Biol Sci ; 10(1): 15-24, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24391447

RESUMEN

C1q-like is a significant maternal factor of TNF/C1q super-family, and the abundant protein has been observed in both mature eggs of Carassius auratus and Carassius auratus gibelio, but its biological function in early embryo development has remained unclear. In this study, we firstly revealed a high level of maternal C1q-like transcript existence only in mature eggs of Carassius auratus, whereas no any maternal C1q-like transcript was observed in that of Carassius auratus gibelio. During embryonic development, the C1q-like zygotic expression begins around cardiopalmus stage in embryos of both Carassius auratus and Carassius auratus gibelio. Then, we examined the biological role of C1q-like by morpholino-mediated knockdown in early embryo development. Knockdown of CaOC1q resulted in a significant reduction of primordial germ cells (PGCs) in Carassius auratus, as shown by whole mount in situ hybridization with vasa-specific RNA probe, fluorescence immunostaining of vasa protein, and GFP imaging of the GFP-nanos1-3'UTR mRNA reporter. In vitro and in vivo evidence indicated that a microRNA, miR-430 could repress the C1q-like expression and PGC development. These data suggest that C1q-like should be a direct target of miR-430 and play an essential role in PGC development of Carassius auratus.


Asunto(s)
Células Germinativas/citología , Carpa Dorada/embriología , Glicoproteínas de Membrana/metabolismo , MicroARNs/metabolismo , Receptores de Complemento/metabolismo , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Northern Blotting , Cartilla de ADN , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Hibridación in Situ , Glicoproteínas de Membrana/genética , MicroARNs/genética , Receptores de Complemento/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA