Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gene ; 859: 147216, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36690224

RESUMEN

The nacre layer is composed of sheet-like aragonite crystals, with often loosely arranged polycrystal aragonite sheets which may induce poor mechanical properties in shells. In this study, a full-length low-complexity domain-containing protein (LCDP) cDNA from the triangle sail mussel Hyriopsis cumingii was generated and its role in shell formation investigated. The full-length cDNA was 1058 bp; it had an open reading frame (ORF) of 714 bp encoding 237 amino acids and contained a 20-amino acid signal peptide at the N-terminus and two low-complexity domains. H. cumingii LCDP was not homologous with other species. Tissue expression analyses showed that LCDP was specifically expressed in the mantle. In shell repair assays, significantly higher LCDP expression was observed in the shell repair group from days 12-21 (p < 0.01). After LCDP silencing, aragonite flake shapes in pearl layers became irregular with disordered deposition, while calcium carbonate (CaCO3) crystal surfaces in prismatic layers became rougher and organic matrices between crystals appeared skeletonized, indicating the importance of biomineralization. Our in vitro CaCO3 crystallization assays showed that LCDP induced single crystals to polycrystals, probably via loose arrangement between aragonite flakes. These results provide new insights on freshwater mollusk biomineralization and a theoretical basis for improved pearl quality.


Asunto(s)
Bivalvos , Nácar , Unionidae , Animales , ADN Complementario/metabolismo , Bivalvos/genética , Bivalvos/metabolismo , Unionidae/genética , Unionidae/metabolismo , Carbonato de Calcio/metabolismo , Nácar/metabolismo , Aminoácidos/metabolismo
2.
ACS Appl Mater Interfaces ; 13(29): 34332-34340, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34275282

RESUMEN

The self-supporting graphdiyne/exfoliated graphene (GDY/EG) composites materials were prepared by the solvothermal method and applied as lithium-ion batteries (LIBs). Graphdiyne (GDY) is a new type of carbon allotrope with a natural macroporous structure, but its conductivity is poor. A small amount of highly conductive graphene can improve surface conductivity and facilitate electron transport. The layered GDY/graphene heterogeneous interface can reduce the electron aggregation polarization, enhance the ability to obtain electrons from the electrolyte, and form a more uniform solid-electrolyte interface (SEI) film. The structural performance and electrochemical performance have been systematically studied. The results showed that the GDY/EG composite electrode has a reversible capacity of 1253 mA h g-1 after 600 cycles at a current density of 0.5 A g-1. When the current density is 5 A g-1, the GDY/EG composite electrode can still maintain a reversible capacity of 324 mA h g-1 after 2000 cycles, and the electrode can still maintain a good morphology after recycling. GDY/EG has a high reversible capacity, excellent rate capability, and cycle stability. A small amount of EG and inner foam copper form a double-layer conductivity, which changes the storage method of lithium ions and facilitates the rapid diffusion of lithium ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...