Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(36)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38821103

RESUMEN

Layered materials with kagome lattice have attracted a lot of attention due to the presence of nontrivial topological bands and correlated electronic states with tunability. In this work, we investigate a unique van der Waals (vdW) material system,A2M3X4(A= K, Rb, Cs;M= Ni, Pd;X= S, Se), where transition metal kagome lattices, chalcogen honeycomb lattices and alkali metal triangular lattices coexist simultaneously. A notable feature of this material is that each Ni/Pd atom is positioned in the center of four chalcogen atoms, forming a local square-planar environment. This crystal field environment results in a low spin stateS= 0 of Ni2+/Pd2+. A systematic study of the crystal growth, crystal structure, magnetic and transport properties of two representative compounds, Rb2Ni3S4and Cs2Ni3Se4, has been carried out on powder and single crystal samples. Both compounds exhibit nonmagneticp-type semiconducting behavior, closely related to the particular chemical environment of Ni2+ions and the alkali metal intercalated vdW structure. Additionally, Cs2Ni3Se4undergoes an insulator-metal transition (IMT) in transport measurements under pressure up to 87.1 GPa without any structural phase transition, while Rb2Ni3S4shows the tendency to be metalized.

2.
Science ; 384(6694): 414-419, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662836

RESUMEN

Degeneracies in multilayer graphene, including spin, valley, and layer degrees of freedom, can be lifted by Coulomb interactions, resulting in rich broken-symmetry states. Here, we report a ferromagnetic state in charge-neutral ABCA-tetralayer graphene driven by proximity-induced spin-orbit coupling from adjacent tungsten diselenide. The ferromagnetic state is identified as a Chern insulator with a Chern number of 4; its maximum Hall resistance reaches 78% quantization at zero magnetic field and is fully quantized at either 0.4 or -1.5 tesla. Three distinct broken-symmetry insulating states, layer-antiferromagnet, Chern insulator, and layer-polarized insulator, along with their transitions, can be continuously tuned by the vertical displacement field. In this system, the magnetic order of the Chern insulator can be switched by three knobs, including magnetic field, electrical doping, and vertical displacement field.

3.
J Am Chem Soc ; 146(12): 8260-8268, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38497725

RESUMEN

We report the synthesis, crystal structure, and physical properties of a novel ternary compound, Th2Cu4As5. The material crystallizes in a tetragonal structure with lattice parameters a = 4.0639(3) Å and c = 24.8221(17) Å. Its structure can be described as an alternating stacking of fluorite-type Th2As2 layers with antifluorite-type double-layered Cu4As3 slabs. The measurement of electrical resistivity, magnetic susceptibility, and specific heat reveals that Th2Cu4As5 undergoes bulk superconducting transition at 4.2 K. Additionally, all these physical quantities exhibit anomalies at 48 K, accompanied by a sign change in the Hall coefficient, suggesting a charge-density-wave-like (CDW) phase transition. Drawing from both experimental data and band calculations, we propose that the superconducting and CDW-like phase transitions are, respectively, associated with the Cu4As3 slabs and the As plane in the Th2As2 layers.

4.
Science ; 382(6677): 1422-1427, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38060675

RESUMEN

Twisted interfaces between stacked van der Waals (vdW) cuprate crystals present a platform for engineering superconducting order parameters by adjusting stacking angles. Using a cryogenic assembly technique, we construct twisted vdW Josephson junctions (JJs) at atomically sharp interfaces between Bi2Sr2CaCu2O8+x crystals, with quality approaching the limit set by intrinsic JJs. Near 45° twist angle, we observe fractional Shapiro steps and Fraunhofer patterns, consistent with the existence of two degenerate Josephson ground states related by time-reversal symmetry (TRS). By programming the JJ current bias sequence, we controllably break TRS to place the JJ into either of the two ground states, realizing reversible Josephson diodes without external magnetic fields. Our results open a path to engineering topological devices at higher temperatures.

5.
Sci Adv ; 9(29): eadg3710, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37467326

RESUMEN

Most resonant inelastic x-ray scattering (RIXS) studies of dynamic charge order correlations in the cuprates have focused on the high-symmetry directions of the copper oxide plane. However, scattering along other in-plane directions should not be ignored as it may help understand, for example, the origin of charge order correlations or the isotropic scattering resulting in strange metal behavior. Our RIXS experiments reveal dynamic charge correlations over the qx-qy scattering plane in underdoped Bi2Sr2CaCu2O8+δ. Tracking the softening of the RIXS-measured bond-stretching phonon, we show that these dynamic correlations exist at energies below approximately 70 meV and are centered around a quasi-circular manifold in the qx-qy scattering plane with radius equal to the magnitude of the charge order wave vector, qCO. This phonon-tracking procedure also allows us to rule out fluctuations of short-range directional charge order (i.e., centered around [qx = ±qCO, qy = 0] and [qx = 0, qy = ±qCO]) as the origin of the observed correlations.

6.
Proc Natl Acad Sci U S A ; 120(2): e2215509119, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36608295

RESUMEN

Recently, Co-based honeycomb magnets have been proposed as promising candidate materials to host the Kitaev spin liquid (KSL) state. One of the front-runners is BaCo2(AsO4)2 (BCAO), where it was suggested that the exchange processes between Co2+ ions via the surrounding edge-sharing oxygen octahedra could give rise to bond-dependent Kitaev interactions. In this work, we present and analyze a comprehensive inelastic neutron scattering (INS) study of BCAO with fields in the honeycomb plane. Combining the constraints from the magnon excitations in the high-field polarized state and the inelastic spin structure factor measured in zero magnetic field, we examine two leading theoretical models: the Kitaev-type [Formula: see text] model and the XXZ[Formula: see text]model. We show that the existing experimental data can be consistently accounted for by the XXZ[Formula: see text]model but not by the [Formula: see text] model, and we discuss the implications of these results for the realization of a spin liquid phase in BCAO and more generally for the realization of the Kitaev model in cobaltates.

7.
Nat Mater ; 22(1): 58-63, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36411349

RESUMEN

Quantum spin liquids (QSLs) are topologically ordered states of matter that host fractionalized excitations. A particular route towards a QSL is via strongly bond-dependent interactions on the hexagonal lattice. A number of Ru- and Ir-based candidate Kitaev QSL materials have been pursued, but all have appreciable non-Kitaev interactions. Using time-domain terahertz spectroscopy, we observed a broad magnetic continuum over a wide range of temperatures and fields in the honeycomb cobalt-based magnet BaCo2(AsO4)2, which has been proposed to be a more ideal version of a Kitaev QSL. Applying an in-plane magnetic field of ~0.5 T suppresses the magnetic order, and at higher fields, applying the field gives rise to a spin-polarized state. Under a 4 T magnetic field that was oriented principally out of plane, a broad magnetic continuum was observed that may be consistent with a field-induced QSL. Our results indicate BaCo2(AsO4)2 is a promising QSL candidate.

8.
Nat Commun ; 13(1): 1316, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35288555

RESUMEN

Understanding the rich and competing electronic orders in cuprate superconductors may provide important insight into the mechanism of high-temperature superconductivity. Here, by measuring Bi2Sr2CaCu2O8+x in the extremely underdoped regime, we obtain evidence for a distinct type of ordering, which manifests itself as resistance oscillations at low magnetic fields (≤10 T) and at temperatures around the superconducting transition. By tuning the doping level p continuously, we reveal that these low-field oscillations occur only when p < 0.1. The oscillation amplitude increases with decreasing p but the oscillation period stays almost constant. We show that these low-field oscillations can be well described by assuming a periodic superconducting structure with a mesh size of about 50 nm. Such a charge order, which is distinctly different from the well-established charge density wave and pair density wave, seems to be an unexpected piece of the puzzle on the correlated physics in cuprates.

9.
Phys Rev Lett ; 126(7): 076802, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33666492

RESUMEN

Yu-Shiba-Rusinov (YSR) bound states appear when a magnetic atom interacts with a superconductor. Here, we report on spin-resolved spectroscopic studies of YSR states related with Fe atoms deposited on the surface of the topological superconductor FeTe_{0.55}Se_{0.45} using a spin-polarized scanning tunneling microscope. We clearly identify the spin signature of pairs of YSR bound states at finite energies within the superconducting gap having opposite spin polarization as theoretically predicted. In addition, we also observe zero-energy bound states for some of the adsorbed Fe atoms. In this case, a spin signature is found to be absent indicating the absence of Majorana bound states associated with Fe adatoms on FeTe_{0.55}Se_{0.45}.

10.
Nat Commun ; 12(1): 1348, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649307

RESUMEN

Braiding Majorana zero modes is essential for fault-tolerant topological quantum computing. Iron-based superconductors with nontrivial band topology have recently emerged as a surprisingly promising platform for creating distinct Majorana zero modes in magnetic vortices in a single material and at relatively high temperatures. The magnetic field-induced Abrikosov vortex lattice makes it difficult to braid a set of Majorana zero modes or to study the coupling of a Majorana doublet due to overlapping wave functions. Here we report the observation of the proposed quantum anomalous vortex with integer quantized vortex core states and the Majorana zero mode induced by magnetic Fe adatoms deposited on the surface. We observe its hybridization with a nearby field-induced Majorana vortex in iron-based superconductor FeTe0.55Se0.45. We also observe vortex-free Yu-Shiba-Rusinov bound states at the Fe adatoms with a weaker coupling to the substrate, and discover a reversible transition between Yu-Shiba-Rusinov states and Majorana zero mode by manipulating the exchange coupling strength. The dual origin of the Majorana zero modes, from magnetic adatoms and external magnetic field, provides a new single-material platform for studying their interactions and braiding in superconductors bearing topological band structures.

11.
Rev Sci Instrum ; 91(7): 073909, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752826

RESUMEN

The exploration of new materials, novel quantum phases, and devices requires ways to prepare cleaner samples with smaller feature sizes. Initially, this meant the use of a cleanroom that limits the amount and size of dust particles. However, many materials are highly sensitive to oxygen and water in the air. Furthermore, the ever-increasing demand for a quantum workforce, trained and able to use the equipment for creating and characterizing materials, calls for a dramatic reduction in the cost to create and operate such facilities. To this end, we present our cleanroom-in-a-glovebox, a system that allows for the fabrication and characterization of devices in an inert argon atmosphere. We demonstrate the ability to perform a wide range of characterization as well as fabrication steps, without the need for a dedicated room, all in an argon environment. Finally, we discuss the custom-built antechamber attached to the back of the glovebox. This antechamber allows the glovebox to interface with ultra-high vacuum equipment such as molecular-beam epitaxy and scanning tunneling microscopy.

13.
J Am Chem Soc ; 142(11): 5389-5395, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32090566

RESUMEN

A previously unreported 1D iridate, K3Ir2O6, has been grown by a flux method in O2-rich environment, and its crystal structure was determined via single crystal structural analysis. It exhibits straight chains of face-sharing [IrO6] octahedra, which are arranged along the crystallographic c axis, separated by nonmagnetic K ions. No magnetic transitions are observed during measured range, and the material is electrically insulating. Potentially interesting electronic behavior for K3Ir2O6 is supported by electronic structure calculations. A structurally related material, K16.3Ir8O30, which displays similar fundamental geometric units but in a different spatial arrangement-zigzag chains-based on edge and face sharing [IrO6] octahedra, is also reported. Both materials are of interest for probing the properties of a 1D system with strong spin-orbit coupling.

14.
Nat Commun ; 11(1): 1046, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32098952

RESUMEN

The thermoelectric Hall effect is the generation of a transverse heat current upon applying an electric field in the presence of a magnetic field. Here, we demonstrate that the thermoelectric Hall conductivity αxy in the three-dimensional Dirac semimetal ZrTe5 acquires a robust plateau in the extreme quantum limit of magnetic field. The plateau value is independent of the field strength, disorder strength, carrier concentration, or carrier sign. We explain this plateau theoretically and show that it is a unique signature of three-dimensional Dirac or Weyl electrons in the extreme quantum limit. We further find that other thermoelectric coefficients, such as the thermopower and Nernst coefficient, are greatly enhanced over their zero-field values even at relatively low fields.

15.
Sci Adv ; 6(4): eaay6953, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32042902

RESUMEN

Layered honeycomb magnets are of interest as potential realizations of the Kitaev quantum spin liquid (KQSL), a quantum state with long-range spin entanglement and an exactly solvable Hamiltonian. Conventional magnetically ordered states are present for all currently known candidate materials, however, because non-Kitaev terms in the Hamiltonians obscure the Kitaev physics. Current experimental studies of the KQSL are focused on 4d or 5d transition metal-based honeycombs, in which strong spin-orbit coupling can be expected, yielding Kitaev interaction that dominates in an applied magnetic field. In contrast, for 3d-based layered honeycomb magnets, spin-orbit coupling is weak, and thus, Kitaev physics should be substantially less accessible. Here, we report our studies on BaCo2(AsO4)2, for which we find that the magnetic order associated with the non-Kitaev interactions can be fully suppressed by a relatively low magnetic field, yielding a nonmagnetic material and implying the presence of strong magnetic frustration and weak non-Kitaev interactions.

16.
Science ; 367(6474): 189-192, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31831637

RESUMEN

Majorana zero modes (MZMs) are spatially localized, zero-energy fractional quasiparticles with non-Abelian braiding statistics that hold promise for topological quantum computing. Owing to the particle-antiparticle equivalence, MZMs exhibit quantized conductance at low temperature. By using variable-tunnel-coupled scanning tunneling spectroscopy, we studied tunneling conductance of vortex bound states on FeTe0.55Se0.45 superconductors. We report observations of conductance plateaus as a function of tunnel coupling for zero-energy vortex bound states with values close to or even reaching the 2e 2/h quantum conductance (where e is the electron charge and h is Planck's constant). By contrast, no plateaus were observed on either finite energy vortex bound states or in the continuum of electronic states outside the superconducting gap. This behavior of the zero-mode conductance supports the existence of MZMs in FeTe0.55Se0.45.

17.
Nature ; 575(7781): 156-163, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666697

RESUMEN

Although copper oxide high-temperature superconductors constitute a complex and diverse material family, they all share a layered lattice structure. This curious fact prompts the question of whether high-temperature superconductivity can exist in an isolated monolayer of copper oxide, and if so, whether the two-dimensional superconductivity and various related phenomena differ from those of their three-dimensional counterparts. The answers may provide insights into the role of dimensionality in high-temperature superconductivity. Here we develop a fabrication process that obtains intrinsic monolayer crystals of the high-temperature superconductor Bi2Sr2CaCu2O8+δ (Bi-2212; here, a monolayer refers to a half unit cell that contains two CuO2 planes). The highest superconducting transition temperature of the monolayer is as high as that of optimally doped bulk. The lack of dimensionality effect on the transition temperature defies expectations from the Mermin-Wagner theorem, in contrast to the much-reduced transition temperature in conventional two-dimensional superconductors such as NbSe2. The properties of monolayer Bi-2212 become extremely tunable; our survey of superconductivity, the pseudogap, charge order and the Mott state at various doping concentrations reveals that the phases are indistinguishable from those in the bulk. Monolayer Bi-2212 therefore displays all the fundamental physics of high-temperature superconductivity. Our results establish monolayer copper oxides as a platform for studying high-temperature superconductivity and other strongly correlated phenomena in two dimensions.

18.
Phys Rev Lett ; 122(24): 247001, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31322397

RESUMEN

We developed novel techniques to fabricate atomically thin Bi_{2.1}Sr_{1.9}CaCu_{2.0}O_{8+δ} van der Waals heterostructures down to two unit cells while maintaining a transition temperature T_{c} close to the bulk, and carry out magnetotransport measurements on these van der Waals devices. We find a double sign change of the Hall resistance R_{xy} as in the bulk system, spanning both below and above T_{c}. Further, we observe a drastic enlargement of the region of sign reversal in the temperature-magnetic field phase diagram with decreasing thickness of the device. We obtain quantitative agreement between experimental R_{xy}(T,B) and the predictions of the vortex dynamics-based description of Hall effect in high-temperature superconductors both above and below T_{c}.

19.
Nano Lett ; 19(8): 4890-4896, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31268723

RESUMEN

Combining topology and superconductivity provides a powerful tool for investigating fundamental physics as well as a route to fault-tolerant quantum computing. There is mounting evidence that the Fe-based superconductor FeTe0.55Se0.45 (FTS) may also be topologically nontrivial. Should the superconducting order be s±, then FTS could be a higher order topological superconductor with helical hinge zero modes (HHZMs). To test the presence of these modes, we have fabricated normal-metal/superconductor junctions on different surfaces via 2D atomic crystal heterostructures. As expected, junctions in contact with the hinge reveal a sharp zero bias anomaly that is absent when tunneling purely into the c-axis. Additionally, the shape and suppression with temperature are consistent with highly coherent modes along the hinge and are incongruous with other origins of zero bias anomalies. Additional measurements with soft-point contacts in bulk samples with various Fe interstitial contents demonstrate the intrinsic nature of the observed mode. Thus, we provide evidence that FTS is indeed a higher order topological superconductor.

20.
Proc Natl Acad Sci U S A ; 116(29): 14505-14510, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31266895

RESUMEN

Currently under active study in condensed matter physics, both theoretically and experimentally, are quantum spin liquid (QSL) states, in which no long-range magnetic ordering appears at low temperatures due to strong quantum fluctuations of the magnetic moments. The existing QSL candidates all have their intrinsic disadvantages, however, and solid evidence for quantum fluctuations is scarce. Here, we report a previously unreported compound, [Formula: see text], a geometrically frustrated system with effective spin-1/2 local moments for Co2+ ions on an isotropic 2-dimensional (2D) triangular lattice. Magnetic susceptibility and neutron scattering experiments show no magnetic ordering down to 0.05 K. Thermodynamic measurements show that there is a tremendous amount of magnetic entropy present below 1 K in 0-applied magnetic field. The presence of localized low-energy spin fluctuations is revealed by inelastic neutron measurements. At low applied fields, these spin excitations are confined to low energy and contribute to the anomalously large specific heat. In larger applied fields, the system reverts to normal behavior as evident by both neutron and thermodynamic results. Our experimental characterization thus reveals that this material is an excellent candidate for the experimental realization of a QSL state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA