Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7484, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980416

RESUMEN

The H3 methyltransferases ATXR5 and ATXR6 deposit H3.1K27me1 to heterochromatin to prevent genomic instability and transposon re-activation. Here, we report that atxr5 atxr6 mutants display robust resistance to Geminivirus. The viral resistance is correlated with activation of DNA repair pathways, but not with transposon re-activation or heterochromatin amplification. We identify RAD51 and RPA1A as partners of virus-encoded Rep protein. The two DNA repair proteins show increased binding to heterochromatic regions and defense-related genes in atxr5 atxr6 vs wild-type plants. Consequently, the proteins have reduced binding to viral DNA in the mutant, thus hampering viral amplification. Additionally, RAD51 recruitment to the host genome arise via BRCA1, HOP2, and CYCB1;1, and this recruitment is essential for viral resistance in atxr5 atxr6. Thus, Geminiviruses adapt to healthy plants by hijacking DNA repair pathways, whereas the unstable genome, triggered by reduced H3.1K27me1, could retain DNA repairing proteins to suppress viral amplification in atxr5 atxr6.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Geminiviridae , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Heterocromatina/metabolismo , Geminiviridae/genética , Histonas/metabolismo , Replicación del ADN , Reparación del ADN/genética , Metiltransferasas/metabolismo
2.
J Exp Bot ; 74(7): 2295-2310, 2023 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-36416783

RESUMEN

RNA helicases (RHs) are a family of ubiquitous enzymes that alter RNA structures and remodel ribonucleoprotein complexes typically using energy from the hydrolysis of ATP. RHs are involved in various aspects of RNA processing and metabolism, exemplified by transcriptional regulation, pre-mRNA splicing, miRNA biogenesis, liquid-liquid phase separation, and rRNA biogenesis, among other molecular processes. Through these mechanisms, RHs contribute to vegetative and reproductive growth, as well as abiotic and biotic stress responses throughout the life cycle in plants. In this review, we systematically characterize RH-featured domains and signature motifs in Arabidopsis. We also summarize the functions and mechanisms of RHs in various biological processes in plants with a focus on DEAD-box and DEAH-box RNA helicases, aiming to present the latest understanding of RHs in plant biology.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Helicasas DEAD-box/genética , Plantas/genética , Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Empalme del ARN
3.
J Integr Plant Biol ; 63(8): 1475-1490, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34020507

RESUMEN

Translational repression is a conserved mechanism in microRNA (miRNA)-guided gene silencing. In Arabidopsis, ARGONAUTE1 (AGO1), the major miRNA effector, localizes in the cytoplasm for mRNA cleavage and at the endoplasmic reticulum (ER) for translational repression of target genes. However, the mechanism underlying miRNA-mediated translational repression is poorly understood. In particular, how the subcellular partitioning of AGO1 is regulated is largely unexplored. Here, we show that the plant hormone brassinosteroids (BRs) inhibit miRNA-mediated translational repression by negatively regulating the distribution of AGO1 at the ER in Arabidopsis thaliana. We show that the protein levels rather than the transcript levels of miRNA target genes were reduced in BR-deficient mutants but increased under BR treatments. The localization of AGO1 at the ER was significantly decreased under BR treatments while it was increased in the BR-deficient mutants. Moreover, ROTUNDIFOLIA3 (ROT3), an enzyme involved in BR biosynthesis, co-localizes with AGO1 at the ER and interacts with AGO1 in a GW motif-dependent manner. Complementation analysis showed that the AGO1-ROT3 interaction is necessary for the function of ROT3. Our findings provide new clues to understand how miRNA-mediated gene silencing is regulated by plant endogenous hormones.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Brasinoesteroides/farmacología , Retículo Endoplásmico/metabolismo , MicroARNs/metabolismo , Biosíntesis de Proteínas , Sistema Enzimático del Citocromo P-450/metabolismo , Retículo Endoplásmico/efectos de los fármacos , MicroARNs/genética , Modelos Biológicos , Mutación/genética , Fenotipo , Unión Proteica/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos
4.
Nat Plants ; 6(8): 970-982, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32690892

RESUMEN

SERRATE (SE) is a key factor in RNA metabolism. Here, we report that SE binds 20S core proteasome α subunit G1 (PAG1) among other components and is accumulated in their mutants. Purified PAG1-containing 20S proteasome degrades recombinant SE via an ATP- and ubiquitin-independent manner in vitro. Nevertheless, PAG1 is a positive regulator for SE in vivo, as pag1 shows comparable molecular and/or developmental defects relative to se. Furthermore, SE is poorly assembled into macromolecular complexes, exemplified by the microprocessor in pag1 compared with Col-0. SE overexpression triggered the destruction of both transgenic and endogenous protein, leading to similar phenotypes of se and SE overexpression lines. We therefore propose that PAG1 degrades the intrinsically disordered portion of SE to secure the functionality of folded SE that is assembled and protected in macromolecular complexes. This study provides insight into how the 20S proteasome regulates RNA metabolism through controlling its key factor in eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN de Planta/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ubiquitina/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(9): 3899-3908, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30760603

RESUMEN

During RNA-directed DNA methylation (RdDM), the DDR complex, composed of DRD1, DMS3, and RDM1, is responsible for recruiting DNA polymerase V (Pol V) to silence transposable elements (TEs) in plants. However, how the DDR complex is regulated remains unexplored. Here, we show that the anaphase-promoting complex/cyclosome (APC/C) regulates the assembly of the DDR complex by targeting DMS3 for degradation. We found that a substantial set of RdDM loci was commonly de-repressed in apc/c and pol v mutants, and that the defects in RdDM activity resulted from up-regulated DMS3 protein levels, which finally caused reduced Pol V recruitment. DMS3 was ubiquitinated by APC/C for degradation in a D box-dependent manner. Competitive binding assays and gel filtration analyses showed that a proper level of DMS3 is critical for the assembly of the DDR complex. Consistent with the importance of the level of DMS3, overaccumulation of DMS3 caused defective RdDM activity, phenocopying the apc/c and dms3 mutants. Moreover, DMS3 is expressed in a cell cycle-dependent manner. Collectively, these findings provide direct evidence as to how the assembly of the DDR complex is regulated and uncover a safeguarding role of APC/C in the regulation of RdDM activity.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Metilación de ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Ciclosoma-Complejo Promotor de la Anafase/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas Cromosómicas no Histona/química , Elementos Transponibles de ADN/genética , ARN Polimerasas Dirigidas por ADN/química , Receptores con Dominio Discoidina/química , Receptores con Dominio Discoidina/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética
6.
Dev Cell ; 41(5): 527-539.e5, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28586645

RESUMEN

Phosphorylation plays an essential role in microRNA (miRNA) processing by regulating co-factors of the miRNA biogenesis machinery. HYL1 (Hyponastic Leaves 1), a core co-factor in plant miRNA biogenesis, is a short-lived phosphoprotein. However, the precise balance and regulatory mechanism of the stability and phosphorylation of HYL1 remain unclear. Here, we show that a highly conserved PP4 (Protein Phosphatase 4) and SMEK1 (Suppressor of MEK 1) complex dephosphorylates HYL1 to promote miRNA biogenesis, by antagonizing the MAPK cascade in Arabidopsis. The smek1 mutants exhibit defective miRNA biogenesis due to accelerated degradation of HYL1. SMEK1 stabilizes HYL1 in a dual manner: SMEK1, as a suppressor, inhibits MAPK activation to attenuate HYL1 phosphorylation; SMEK1 assembles a functional PP4 to target HYL1 for dephosphorylation. Moreover, the protein level of SMEK1 is increased in response to abscisic acid. Our results provide insights into the delicate balance between a protein kinase and a phosphatase during miRNA biogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Sistema de Señalización de MAP Quinasas , MicroARNs/genética , Fosfoproteínas Fosfatasas/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Fosfoproteínas Fosfatasas/genética , Fosforilación , Plantas Modificadas Genéticamente , Proteínas de Unión al ARN/genética
7.
PLoS Genet ; 12(11): e1006422, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27870853

RESUMEN

Lariat RNAs formed as by-products of splicing are quickly degraded by the RNA debranching enzyme 1 (DBR1), leading to their turnover. Null dbr1 mutants in both animals and plants are embryo lethal, but the mechanism underlying the lethality remains unclear. Here we characterized a weak mutant allele of DBR1 in Arabidopsis, dbr1-2, and showed that a global increase in lariat RNAs was unexpectedly accompanied by a genome-wide reduction in miRNA accumulation. The dbr1-2 mutation had no effects on expression of miRNA biogenesis genes or primary miRNAs (pri-miRNAs), but the association of pri-miRNAs with the DCL1/HYL1 dicing complex was impaired. Lariat RNAs were associated with the DCL1/HYL1 dicing complex in vivo and competitively inhibited the binding of HYL1 with pri-miRNA. Consistent with the impacts of lariat RNAs on miRNA biogenesis, over-expression of lariat RNAs reduced miRNA accumulation. Lariat RNAs localized in nuclear bodies, and partially co-localize with HYL1, and both DCL1 and HYL1 were mis-localized in dbr1-2. Together with our findings that nearly four hundred lariat RNAs exist in wild type plants and that these lariat RNAs also associate with the DCL1/HYL1 dicing complex in vivo, we thus propose that lariat RNAs, as decoys, inhibit miRNA processing, suggesting a hitherto unknown layer of regulation in miRNA biogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , MicroARNs/biosíntesis , ARN Nucleotidiltransferasas/genética , Proteínas de Unión al ARN/genética , Ribonucleasa III/genética , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Intrones/genética , MicroARNs/genética , Proteínas Mutantes/genética , ARN Nucleotidiltransferasas/metabolismo , Procesamiento Postranscripcional del ARN/genética , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...