Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37951383

RESUMEN

The disruption of the diurnal rhythm has been recognized as a significant contributing factor to metabolic dysregulation. The important role of gut microbiota and bile acid metabolism has attracted extensive attention. However, the function of the gut microbiota-bile acid axis in regulating the diurnal rhythms of metabolic homeostasis remains largely unknown. Herein, we aimed to investigate the interplay between rhythmicity of host metabolism and gut microbiota-bile acid axis, as well as to assess the impact of obesity on them. We found that high fat diet feeding and Leptin gene deficiency (ob/ob) significantly disturbed the rhythmic patterns of insulin sensitivity and serum total cholesterol levels. The bile acid profiling unveiled a conspicuous diurnal rhythm oscillation of ursodeoxycholic acid (UDCA) in lean mice, concomitant with fluctuations in insulin sensitivity, whereas it was absent in obese mice. The aforementioned diurnal rhythm oscillations were largely desynchronized by gut microbiota depletion, suggesting the indispensable role of gut microbiota in diurnal regulation of insulin sensitivity and bile acid metabolism. Consistently, 16S rRNA sequencing revealed that UDCA-associated bacteria exhibited diurnal rhythm oscillations that paralleled the fluctuation in insulin sensitivity. Collectively, the current study provides compelling evidence regarding the association between diurnal rhythm of insulin sensitivity and gut microbiota-bile acid axis. Moreover, we have elucidated the deleterious effects of obesity on gut microbiome-bile acid metabolism in both the genetic obesity model and the diet-induced obesity model.


Asunto(s)
Microbioma Gastrointestinal , Resistencia a la Insulina , Animales , Ratones , ARN Ribosómico 16S , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos y Sales Biliares , Ácido Ursodesoxicólico , Ritmo Circadiano
3.
Anal Chim Acta ; 1251: 341039, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-36925303

RESUMEN

The gut microbiota interacts with the host via production of various metabolites of dietary nutrients. Herein, we proposed the concept of the gut microbiota-derived core nutrient metabolome, which covers 43 metabolites in carbohydrate metabolism, glycolysis, tricarboxylic acid cycle and amino acid metabolism, and established a quantitative UPLC-Q/TOF-MS method through 3-nitrophenylhydrazine derivatization to investigate the influence of obesity on the gut microbiota in mice. All metabolites could be simultaneously analyzed via separation on a BEH C18 column within 18 min. The lower limits of quantification of most analytes were less than 1 µM. Validation results demonstrated suitability for the analysis of mouse fecal samples. The method was then applied to detect the gut microbiota-derived nutrient metabolome in the feces of high-fat diet induced obese (DIO) and ob/ob (leptin-deficient) mice, as well as obesity-prone (OP) and obesity-resistant (OR) mice. Compared to the control groups, there were 13, 23 and 10 differentially abundant metabolites detected in ob/ob, DIO and OP groups, respectively. Among them, amino acids including leucine, isoleucine, glycine, methionine, tyrosine and glutamine were co-downregulated in the obese or OP mice and exhibited inverse association with body weight. 16S rDNA analysis revealed that the genera Lactobacillus and Dubosiella were also inversely associated with body weight and positively correlated with fecal amino acids. Collectively, our work provides an effective and simplified method for simultaneous quantifying the gut microbiota-derived core nutrient metabolome in mouse feces, which could assist various future studies on host-microbiota metabolic interaction.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Metaboloma , Heces , Obesidad/metabolismo , Aminoácidos/metabolismo , Nutrientes
4.
Acta Pharmacol Sin ; 44(1): 145-156, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35655096

RESUMEN

Propolis is commonly used in traditional Chinese medicine. Studies have demonstrated the therapeutic effects of propolis extracts and its major bioactive compound caffeic acid phenethyl ester (CAPE) on obesity and diabetes. Herein, CAPE was found to have pharmacological activity against nonalcoholic fatty liver disease (NAFLD) in diet-induced obese mice. CAPE, previously reported as an inhibitor of bacterial bile salt hydrolase (BSH), inhibited BSH enzymatic activity in the gut microbiota when administered to mice. Upon BSH inhibition by CAPE, levels of tauro-ß-muricholic acid were increased in the intestine and selectively suppressed intestinal farnesoid X receptor (FXR) signaling. This resulted in lowering of the ceramides in the intestine that resulted from increased diet-induced obesity. Elevated intestinal ceramides are transported to the liver where they promoted fat production. Lowering FXR signaling was also accompanied by increased GLP-1 secretion. In support of this pathway, the therapeutic effects of CAPE on NAFLD were absent in intestinal FXR-deficient mice, and supplementation of mice with C16-ceramide significantly exacerbated hepatic steatosis. Treatment of mice with an antibiotic cocktail to deplete BSH-producing bacteria also abrogated the therapeutic activity of CAPE against NAFLD. These findings demonstrate that CAPE ameliorates obesity-related steatosis at least partly through the gut microbiota-bile acid-FXR pathway via inhibiting bacterial BSH activity and suggests that propolis enriched with CAPE might serve as a promising therapeutic agent for the treatment of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Própolis , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Própolis/metabolismo , Própolis/farmacología , Própolis/uso terapéutico , Intestinos , Hígado/metabolismo , Obesidad/tratamiento farmacológico , Bacterias/metabolismo , Ceramidas/metabolismo , Ácidos y Sales Biliares/metabolismo , Ratones Endogámicos C57BL
5.
Microbiome ; 10(1): 226, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36517893

RESUMEN

OBJECTIVE: High intake of caffeoylquinic acid (CQA)-rich dietary supplements, such as green coffee bean extracts, offers health-promoting effects on maintaining metabolic homeostasis. Similar to many active herbal ingredients with high pharmacological activities but low bioavailability, CQA has been reported as a promising thermogenic agent with anti-obesity properties, which contrasts with its poor oral absorption. Intestinal tract is the first site of CQA exposure and gut microbes might react quickly to CQA. Thus, it is of interest to explore the role of gut microbiome and microbial metabolites in the beneficial effects of CQA on obesity-related disorders. RESULTS: Oral CQA supplementation effectively enhanced energy expenditure by activating browning of adipose and thus ameliorated obesity-related metabolic dysfunctions in high fat diet-induced obese (DIO) mice. Here, 16S rRNA gene amplicon sequencing revealed that CQA treatment remodeled the gut microbiota to promote its anti-obesity actions, as confirmed by antibiotic treatment and fecal microbiota transplantation. CQA enriched the gut commensal species Limosilactobacillus reuteri (L. reuteri) and stimulated the production of short-chain fatty acids, especially propionate. Mono-colonization of L. reuteri or low-dose CQA treatment did not reduce adiposity in DIO mice, while their combination elicited an enhanced thermogenic response, indicating the synergistic effects of CQA and L. reuteri on obesity. Exogenous propionate supplementation mimicked the anti-obesity effects of CQA alone or when combined with L. reuteri, which was ablated by the monocarboxylate transporter (MCT) inhibitor 7ACC1 or MCT1 disruption in inguinal white adipose tissues to block propionate transport. CONCLUSIONS: Our data demonstrate a functional axis among L. reuteri, propionate, and beige fat tissue in the anti-obesity action of CQA through the regulation of thermogenesis. These findings provide mechanistic insights into the therapeutic use of herbal ingredients with poor bioavailability via their interaction with the gut microbiota. Video Abstract.


Asunto(s)
Adiposidad , Limosilactobacillus reuteri , Ratones , Animales , ARN Ribosómico 16S/metabolismo , Propionatos , Obesidad/complicaciones , Dieta Alta en Grasa , Ratones Endogámicos C57BL
6.
Molecules ; 27(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36014584

RESUMEN

A homogeneous polysaccharide coded as CPP-1 was extracted and purified from the root of Codonopsis pilosula (Franch.) Nannf. by water extraction, ethanol precipitation, and column chromatography. Its structure was analyzed by HPGPC-ELSD, HPLC, GC-MS, FT-IR, and NMR techniques. The results indicated that CPP-1 was composed of mannose (Man), glucose (Glc), galactose (Gal), and arabinose (Ara) at a molar ratio of 5.86 : 51.69 : 34.34 : 8.08. The methylation analysis revealed that the main glycosidic linkage types of CPP-1 were (1→)-linked-Glc residue, (1→3)-linked-Glc residues, (1→4)-linked-Gal residue, (1→2,3,4)-linked-Glc residue, (1→)-linked-Man residue, (1→3,4)-linked-Glc residue, and (1→)-linked-Ara residue. In vivo efficacy trial illustrated that CPP-1 supplements could alleviate HFD-induced mice obesity significantly, as well as improve obesity-induced disorders of glucose metabolism, alleviate insulin resistance, and improve the effects of lipid metabolism. The findings indicate that this polysaccharide has the potential for the treatment of obesity.


Asunto(s)
Codonopsis , Animales , Codonopsis/química , Dieta , Carbohidratos de la Dieta , Galactosa , Humanos , Manosa , Ratones , Obesidad/tratamiento farmacológico , Polisacáridos/química , Polisacáridos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
7.
Molecules ; 26(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34361604

RESUMEN

A novel homogeneous polysaccharide named GEP-1 was isolated and purified from Gastrodia elata (G. elata) by hot-water extraction, ethanol precipitation, and membrane separator. GEP-1, which has a molecular weight of 20.1 kDa, contains a polysaccharide framework comprised of only glucose. Methylation and NMR analysis showed that GEP-1 contained 1,3,6-linked-α-Glcp, 1,4-linked-α-Glcp, 1,4-linked-ß-Glcp and 1,4,6-linked-α-Glcp. Interestingly, GEP-1 contained citric acid and repeating p-hydroxybenzyl alcohol as one branch. Furthermore, a bioactivity test showed that GEP-1 could significantly promote the growth of Akkermansia muciniphila (A. muciniphila) and Lacticaseibacillus paracasei (L.paracasei) strains. These results implied that GEP-1 might be useful for human by modulating gut microbiota.


Asunto(s)
Gastrodia/química , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/química , Polisacáridos/farmacología , Akkermansia/efectos de los fármacos , Carbohidratos , Carbohidratos de la Dieta
8.
Int J Biol Macromol ; 186: 501-509, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34271043

RESUMEN

Two homogeneous polysaccharides, GEP-3 and GEP-4, were purified from Gastrodia elata, a precious traditional Chinese medicine. Their structural characteristics were obtained using HPGPC, PMP-HPLC, LC/MS, FT-IR, NMR, and SEM methods. GEP-3 was 1,4-glucan with molecular weight of 20 kDa. Interestingly, GEP-4 comprised of a backbone of →[4)-α-Glcp-(1]10→[4)-α-Glcp-(1→]5[6)-ß-Glcp-(1]11→6)-α-Glcp-(3→ and two branches of ß-Glcp and p-hydroxybenzyl alcohol citrate, with repeating p-hydroxybenzyl alcohol attached to the backbone chain at O-6 position of →4,6)-α-Glcp-(1→ and O-1 position of →3,6)-α-Glcp-(1→. GEP-4 is a novel polysaccharide obtained and characterized for the first time. Bioactivity test indicated that both of them significantly promote the growth of Akkermansia muciniphila (Akk. muciniphila). Furthermore, GEP-3 and GEP-4 promoted the growth of Akk. muciniphila from high-fat diet (HFD) fecal microbiota. These results indicated that GEP-3 and GEP-4 were potential Akk. muciniphila growth promoters.


Asunto(s)
Gastrodia , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Akkermansia/efectos de los fármacos , Akkermansia/crecimiento & desarrollo , Akkermansia/aislamiento & purificación , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Heces/microbiología , Gastrodia/química , Microbioma Gastrointestinal , Ratones , Estructura Molecular , Enfermedad del Hígado Graso no Alcohólico/microbiología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Polisacáridos/química , Polisacáridos/aislamiento & purificación
9.
Int J Syst Evol Microbiol ; 70(9): 5048-5053, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32783808

RESUMEN

A Gram-stain-negative, non-flagellated bacterium, designated ZY111T, was isolated from the surface of a marine red alga, which was collected from the coast in Weihai, Shandong Province, PR China. Strain ZY111T exhibited growth at 4-37 °C (optimum, 25-28 °C) in the presence of 0-8.0 % (w/v) NaCl (optimum, 2.0-4.0% NaCl) and at pH 6.5-9.5 (optimum, pH 7.0-8.0). The 16S rRNA gene sequence analysis revealed that strain ZY111T belonged to the genus Algibacter, with Algibacter amylolyticus DSM 29199T as its closest relative (97.7 % similarity). The averagenucleotide identity value of strain ZY111T with A. amylolyticus DSM 29199T was 79.03 %. The digitalDNA-DNA hybridization value of strain ZY111T with A. amylolyticus DSM 29199T was 22.40 %. The dominant fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C15 : 0 3-OH and iso-C17 : 0 3-OH. The sole respiratory quinone was determined to be menaquinone-6. The polar lipid profile of strain ZY111T consisted of phosphatidylethanolamine, two unidentified aminolipids and three unidentified lipids. The G+C content was 31.9 mol%. The phenotypic, chemotaxonomic and phylogenetic data clearly showed that strain ZY111T represents a novel species of the genus Algibacter, for which the name Algibacter marinivivus sp. nov. is proposed. The type strain is ZY111T (=KCTC 62373T=MCCC 1H00295T).


Asunto(s)
Flavobacteriaceae/clasificación , Filogenia , Rhodophyta/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacteriaceae/aislamiento & purificación , Hibridación de Ácido Nucleico , Fosfatidiletanolaminas/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Int J Syst Evol Microbiol ; 70(1): 450-456, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31592762

RESUMEN

A facultatively anaerobic, Gram-stain-negative and non-gliding bacterium, designated F01T, was isolated from marine solar saltern in Weihai, PR China. Cells of F01T were 0.2-0.4 µm wide and 1.4-4.1 µm long, weakly catalase-positive and oxidase-negative. Growth of F01T was determined to occur at 4-40 °C (optimum, 33-37 °C), pH 6.5-8.5 (optimum, 7.0-8.0), and with 0.5-18.0 % (w/v) NaCl (optimum, 3.0-6.0 %). The 16S rRNA gene sequence analysis indicated that F01T represented a member of the genus Marinobacter within the family Alteromonadaceae. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was most closely related to Marinobacter algicola DSM 16394T, with a sequence similarity of 97.5 %. The DNA G+C content of the isolate was 57.6 mol%. The major respiratory quinone of F01T was ubiquinone-9 (Q-9) and the major fatty acids were anteiso-C15 : 0, C16 : 0 and C18 : 1ω9c. The major polar lipids were phosphoaminolipid, phosphatidylglycerol and phosphatidylethanolamine. On the basis of the results of the phylogenetic analysis and phenotypic properties, it is concluded that F01T can be considered to represent a novel species in the genus Marinobacter, for which the name Marinobacter vulgaris sp. nov. is proposed. The type strain is F01T (=MCCC 1H00290T=KCTC 52700T).


Asunto(s)
Marinobacter/clasificación , Filogenia , Salinidad , Microbiología del Agua , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Marinobacter/aislamiento & purificación , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA