Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Genome Med ; 16(1): 95, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095897

RESUMEN

BACKGROUND: Ischemic stroke elicits a complex and sustained immune response in the brain. Immunomodulatory treatments have long held promise for improving stroke outcomes, yet none have succeeded in the clinical setting. This lack of success is largely due to our incomplete understanding of how immune cells respond to stroke. The objective of the current study was to dissect the effect of permanent stroke on microglia, the resident immune cells within the brain parenchyma. METHODS: A permanent middle cerebral artery occlusion (pMCAO) model was used to induce ischemic stroke in young male and female mice. Microglia were sorted from fluorescence reporter mice after pMCAO or sham surgery and then subjected to single-cell RNA sequencing analysis. Various methods, including flow cytometry, RNA in situ hybridization, immunohistochemistry, whole-brain imaging, and bone marrow transplantation, were also employed to dissect the microglial response to stroke. Stroke outcomes were evaluated by infarct size and behavioral tests. RESULTS: First, we showed the morphologic and spatial changes in microglia after stroke. We then performed single-cell RNA sequencing analysis on microglia isolated from sham and stroke mice of both sexes. The data indicate no major sexual dimorphism in the microglial response to permanent stroke. Notably, we identified seven potential stroke-associated microglial clusters, including four major clusters characterized by a disease-associated microglia-like signature, a highly proliferative state, a macrophage-like profile, and an interferon (IFN) response signature, respectively. Importantly, we provided evidence that the macrophage-like cluster may represent the long-sought stroke-induced microglia subpopulation with increased CD45 expression. Lastly, given that the IFN-responsive subset constitutes the most prominent microglial population in the stroke brain, we used fludarabine to pharmacologically target STAT1 signaling and found that fludarabine treatment improved long-term stroke outcome. CONCLUSIONS: Our findings shed new light on microglia heterogeneity in stroke pathology and underscore the potential of targeting specific microglial populations for effective stroke therapies.


Asunto(s)
Encéfalo , Accidente Cerebrovascular Isquémico , Microglía , Animales , Microglía/metabolismo , Microglía/patología , Femenino , Masculino , Ratones , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Análisis de la Célula Individual , Infarto de la Arteria Cerebral Media/patología , Ratones Endogámicos C57BL
2.
Mol Biotechnol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044066

RESUMEN

Pancreatic adenocarcinoma (PAAD) was characterized by dense fibrotic stroma and immunosuppressive tumor microenvironment (TME). TGFß signaling pathways are highly activated in human cancers. However, the role of TGFß2 in TME of PAAD remains to be elucidated. In this study, we showed that TGFß2 was expressed at a relatively high level in PAAD tissues or cancer cells. Moreover, its high expression predicted unfavorable prognosis. In PAAD, gene set enrichment analysis showed that TGFß2 correlated positively with leukocyte transendothelial migration, but negatively with aerobic metabolism, including oxidative phosphorylation. Results in Tumor and Immune System Interaction Database showed that TGFß2 correlated with the infiltration of tumor-associated macrophages (TAMs), which could be attributed to that TGFß2 promote CCL2 expression in PAAD. Moreover, correlation analysis showed that TGFß2 could trigger cancer-associated fibroblasts (CAFs) activation in PAAD. The drug sensitivity analysis may indicate that patients with TGFß2 high expression have higher sensitivity to chemotherapeutics, but the sensitivity to targeted drugs is still controversial. TGFß2 could promote expansion of CAFs and infiltration of TAMs, thus participating in the construction of a fibrotic and immunosuppressive TME in PAAD. Targeting TGFß2 could be a promising therapeutic approach, which needs to be elucidated by clinical and experimental evidences.

3.
Med Sci Monit ; 30: e944294, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970244

RESUMEN

BACKGROUND Non-syndromic cleft lip with cleft palate (NSCLP) is one of the most common congenital birth defects worldwide; it causes lifelong problems and imposes burdens on patients and their families. This study aimed to describe the genomic analysis and identification of de novo regulated endocrine-specific protein 18 (RESP18) rs2385404 and rs2385405 gene polymorphisms associated with NSCLP in a southern Chinese family and to improve prevention, treatment, and prognosis of NSCLP. MATERIAL AND METHODS We performed a genome-wide association study (GWAS) to investigate the association of NSCLP phenotype with gene mutation. We investigated a 5-persons NSCLP family to screen the genetic variation of Han nationality in southern Chinese. Whole-genome sequencing (WGS) was used to detect all candidate genetic variants, and whole-exome sequencing (WES) was implemented to further verify mutations. The Clinical Variation Data Base (ClinVar) was employed for screening gene mutations. Finally, Sanger sequencing was applied to verify gene variations. RESULTS The combined analysis of WGS, WES, and ClinVar showed that a total of 9 variation positions overlapped among the 3 study cohorts. Sanger sequencing verified Glu amino acid variation in 2 mutation sites (rs2385404, rs2385405) from the RESP18 gene, which caused abnormal RESP18 function and was associated with hereditary NSCLP. CONCLUSIONS The combined genomic results showed that 2 mutations (rs2385404 and rs2385405) of the RESP18 gene were related to NSCLP in the family. The RESP18 gene may play an important role in the etiology and pathogenesis of cleft lip and palate.


Asunto(s)
Pueblo Asiatico , Labio Leporino , Fisura del Paladar , Estudio de Asociación del Genoma Completo , Mutación , Linaje , Humanos , Labio Leporino/genética , Fisura del Paladar/genética , Femenino , Mutación/genética , Masculino , Pueblo Asiatico/genética , China , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad/genética , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/métodos , Fenotipo , Pueblos del Este de Asia
4.
Adv Mater ; 36(32): e2401369, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38822749

RESUMEN

Burn wounds often bring high risks of delayed healing process and even death. Reactive oxygen species (ROS) play a crucial role in burn wound repair. However, the dynamic process in wound healing requires both the generation of ROS to inhibit bacteria and the subsequent reduction of ROS levels to initiate and promote tissue regeneration, which calls for a more intelligent ROS regulation dressing system. Hence, a dual-layered hydrogel (Dual-Gel) tailored to the process of burn wound repair is designed: the inner layer hydrogel (Gel 2) first responds to bacterial hyaluronidase (Hyal) to deliver aggregation-induced emission photosensitizer functionalized adipose-derived stem cell nanovesicles, which generate ROS upon light irradiation to eliminate bacteria; then the outer layer hydrogel (Gel 1) continuously starts a long-lasting consumption of excess ROS at the wound site to accelerate tissue regeneration. Simultaneously, the stem cell nanovesicles trapped in the burns wound also provide nutrients and mobilize neighboring tissues to thoroughly assist in inflammation regulation, cell proliferation, migration, and angiogenesis. In summary, this study develops an intelligent treatment approach on burn wounds by programmatically regulating ROS and facilitating comprehensive wound tissue repair.


Asunto(s)
Quemaduras , Hidrogeles , Especies Reactivas de Oxígeno , Células Madre , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Quemaduras/terapia , Quemaduras/metabolismo , Quemaduras/patología , Animales , Hidrogeles/química , Células Madre/citología , Células Madre/metabolismo , Ratones , Regeneración/efectos de los fármacos , Humanos , Hialuronoglucosaminidasa/metabolismo , Nanoestructuras/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Proliferación Celular/efectos de los fármacos
5.
World J Clin Oncol ; 15(4): 531-539, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38689626

RESUMEN

Metastasis remains a major challenge in the successful management of malignant diseases. The liver is a major site of metastatic disease and a leading cause of death from gastrointestinal malignancies such as colon, stomach, and pancreatic cancers, as well as melanoma, breast cancer, and sarcoma. As an important factor that influences the development of metastatic liver cancer, alternative splicing drives the diversity of RNA transcripts and protein subtypes, which may provide potential to broaden the target space. In particular, the dysfunction of splicing factors and abnormal expression of splicing variants are associated with the occurrence, progression, aggressiveness, and drug resistance of cancers caused by the selective splicing of specific genes. This review is the first to provide a detailed summary of the normal splicing process and alterations that occur during metastatic liver cancer. It will cover the role of alternative splicing in the mechanisms of metastatic liver cancer by examining splicing factor changes, abnormal splicing, and the contribution of hypoxia to these changes during metastasis.

6.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 197-206, 2024 Feb 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38755716

RESUMEN

Scars are classified into 5 types: Superficial scars, hypertrophic scars, atrophic scars, depressed scars, and keloid. These types are primarily characterized by abnormal production of fibroblasts and collagen, as well as the disorderly arrangement of connective tissue. Laser treatment for scars involves the coordinated activation of various signaling pathways and cytokines. However, the exact pathological mechanism for scar formation remains unclear, leading to a lack of radical treatment. Recently, laser treatment has gained popularity as a new minimally invasive approach for scar treatment. The emergence of new theories such as fractional, picosecond laser, and laser-assisted drug delivery has led to continuous advance in laser treatment. Up to now, it has been developed numerous novel treatments, including combined with drug, physical, and other treatments, which have shown superior therapeutic effects. In order to optimize laser treatment in the future, it is crucial to combine new materials with postoperative care. This will help clinicians develop more comprehensive treatment strategies. Therefore, it is important to explore treatment options that have broader applicability.


Asunto(s)
Cicatriz , Queloide , Terapia por Láser , Humanos , Cicatriz/terapia , Terapia por Láser/métodos , Queloide/radioterapia , Queloide/terapia , Cicatriz Hipertrófica/radioterapia , Cicatriz Hipertrófica/terapia
7.
J Med Chem ; 67(11): 9054-9068, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38781403

RESUMEN

Molecular hybridization is a well-established strategy for developing new drugs. In the pursuit of promising photosensitizers (PSs) with enhanced photodynamic therapy (PDT) efficiency, a series of novel 5-fluorouracil (5FU) gallium corrole conjugates (1-Ga-4-Ga) were designed and synthesized by hybridizing a chemotherapeutic drug and PSs. Their photodynamic antitumor activity was also evaluated. The most active complex (2-Ga) possesses a low IC50 value of 0.185 µM and a phototoxic index of 541 against HepG2 cells. Additionally, the 5FU-gallium corrole conjugate (2-Ga) exhibited a synergistic increase in cytotoxicity under irradiation. Excitedly, treatment of HepG2 tumor-bearing mice with 2-Ga under irradiation could completely ablate tumors without harming normal tissues. 2-Ga-mediated PDT could disrupt mitochondrial function, cause cell cycle arrest in the sub-G1 phase, and activate the cell apoptosis pathway by upregulating the cleaved PARP expression and the Bax/Bcl-2 ratios. This work provides a useful strategy for the design of new corrole-based chemo-photodynamic therapy drugs.


Asunto(s)
Apoptosis , Fluorouracilo , Galio , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Fluorouracilo/farmacología , Fluorouracilo/química , Fluorouracilo/uso terapéutico , Humanos , Galio/química , Galio/farmacología , Animales , Porfirinas/farmacología , Porfirinas/química , Porfirinas/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/uso terapéutico , Ratones , Apoptosis/efectos de los fármacos , Células Hep G2 , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones Endogámicos BALB C , Ratones Desnudos
8.
Cancer Cell Int ; 24(1): 101, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462618

RESUMEN

BACKGROUND: Despite advances in therapeutic strategies, resistance to immunotherapy and the off-target effects of targeted therapy have significantly weakened the benefits for patients with melanoma. MAIN BODY: Alternative splicing plays a crucial role in transcriptional reprogramming during melanoma development. In particular, aberrant alternative splicing is involved in the efficacy of immunotherapy, targeted therapy, and melanoma metastasis. Abnormal expression of splicing factors and variants may serve as biomarkers or therapeutic targets for the diagnosis and prognosis of melanoma. Therefore, comprehensively integrating their roles and related mechanisms is essential. This review provides the first detailed summary of the splicing process in melanoma and the changes occurring in this pathway. CONCLUSION: The focus of this review is to provide strategies for developing novel diagnostic biomarkers and summarize their potential to alter resistance to targeted therapies and immunotherapy.

9.
J Transl Med ; 22(1): 253, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459561

RESUMEN

Tobacco pollutants are prevalent in the environment, leading to inadvertent exposure of pregnant females. Studies of these pollutants' toxic effects on embryonic development have not fully elucidated the potential underlying mechanisms. Therefore, in this study, we aimed to investigate the developmental toxicity induced by cigarette smoke extract (CSE) at concentrations of 0.25, 1, and 2.5% using a zebrafish embryo toxicity test and integrated transcriptomic analysis of microRNA (miRNA) and messenger RNA (mRNA). The findings revealed that CSE caused developmental toxicity, including increased mortality and decreased incubation rate, in a dose-dependent manner. Moreover, CSE induced malformations and apoptosis, specifically in the head and heart of zebrafish larvae. We used mRNA and miRNA sequencing analyses to compare changes in the expression of genes and miRNAs in zebrafish larvae. The bioinformatics analysis indicates that the mechanism underlying CSE-induced developmental toxicity was associated with compromised genetic material damage repair, deregulated apoptosis, and disturbed lipid metabolism. The enrichment analysis and RT-qPCR show that the ctsba gene plays a crucial function in embryo developmental apoptosis, and the fads2 gene mainly regulates lipid metabolic toxicity. The results of this study improve the understanding of CSE-induced developmental toxicity in zebrafish embryos and contribute insights into the formulation of novel preventive strategies against tobacco pollutants during early embryonic development.


Asunto(s)
Contaminantes Ambientales , MicroARNs , Animales , Femenino , Pez Cebra/genética , Pez Cebra/metabolismo , Embrión no Mamífero/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/farmacología
10.
Eur J Med Chem ; 265: 116102, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176359

RESUMEN

Study on corrole photosensitizers (PSs) for photodynamic therapy (PDT) has made remarkable progress. Targeted delivery of PSs is of great significance for enhancing therapeutic efficiency, decreasing the dosage, and reducing systemic toxicity during PDT. The development of PSs that can be specifically delivered to the subcellular organelle is still an attractive and challenging work. Herein, we synthesize a series of azide-modified corrole phosphorus and gallium complex PSs, in which phosphorus corrole 2-P could not only precisely target the endoplasmic reticulum (ER) with a Pearson correlation coefficient (PCC) up to 0.92 but also possesses the highest singlet oxygen quantum yields (ΦΔ = 0.75). This renders it remarkable PDT activity at a very low dosage (IC50 = 23 nM) towards HepG2 tumor cell line while ablating solid tumors in vivo with excellent biosecurity. Furthermore, 2-P exhibits intense red fluorescence (ΦF = 0.25), outstanding photostability, and a large Stokes shift (190 nm), making it a promising fluorescent probe for ER. This study provides a clinically potential photosensitizer for cancer photodynamic therapy and a promising ER fluorescent probe for bioimaging.


Asunto(s)
Neoplasias , Fotoquimioterapia , Porfirinas , Azidas , Fluorescencia , Fósforo , Colorantes Fluorescentes/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Retículo Endoplásmico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
11.
Front Oncol ; 13: 1280208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090483

RESUMEN

Camrelizumab, a monoclonal antibody, blocks programmed cell death protein-1 from binding to T cells and programmed cell death ligand 1 on tumor cells, thereby ensuring sustained T cell activation and blocking immune escape of various types of cancer, including nasopharyngeal carcinoma. Reactive cutaneous capillary endothelial hyperplasia (RCCEP) is the most common immune-related adverse event in patients treated with camrelizumab. We report a case nasopharyngeal carcinoma in a patient with camrelizumab-induced RCCEP. A 68-year-old man diagnosed with nasopharyngeal carcinoma developed RCCEP at multiple locations after 3 months of camrelizumab treatment. RCCEP of the right lower eyelid affected closure of the right eye. In this report, we also reviewed previous literature on camrelizumab-induced RCCEP. In summary, the mechanism underlying camrelizumab-induced RCCEP remains unclear. RCCEP typically gradually subsides after discontinuing camrelizumab treatment. Larger nodules can be treated with lasers, ligation, or surgery. Although surgical excision is effective, RCCEP may recur in patients undergoing camrelizumab treatment. RCCEP management may not be required in the absence of adverse effects on the patient's daily life.

12.
J Cancer ; 14(13): 2417-2430, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37670976

RESUMEN

Autophagy exerts a pivotal effect on skin cutaneous melanoma (SKCM). This study was aimed to investigate the expression of autophagy related genes (ARGs) in SKCM as well as its clinical value. Differentially expressed (DE) ARGs were downloaded from the intersection of SKCM data in GEPIA2 database and ARGs in Human Autophagy Database (HADB) database, and were verified in SKCM datasets GSE46517 and GSE15605. DE ARGs were enriched by Metascape online tools. According to GEPIA2 database, tumor necrosis factor-related apoptosis-inducing ligand (TNFSF10) was identified as a closely related factor and prognostic marker of SKCM. Then the correlation analysis of clinicopathological characteristics between TNFSF10 and SKCM was completed by several online tools such as TISCH, HPA, BEST and qRT-PCR. Subsequently, we investigated TNFSF10 related functions and signal pathways with LinkedOmics online tool, and immune infiltration using Assistant for Clinical Bioinformatics online tool. Furthermore, correlation analysis between TNFSF10 expression and immunotherapy response was performed by TIDE algorithm and BEST online tool. And Kaplan-Meier Plotter was used to assessing the prognosis of SKCM patients receiving immunotherapy. Finally, the correlation analysis among TNFSF10 methylation, TNFSF10 expression and patient prognosis was completed by the DiseaseMeth version 2.0, UCSC XENA and qRT-PCR. ARGs are DE in SKCM and participate in the ERBB signaling pathway, as well as the processing and presentation of antigens. Moreover, TNFSF10's expression along with methylation expression were significantly associated with the prognosis. Low expression of TNFSF10 was associated with malignant clinicopathological features, lower immune signal activity and lower immunocytes abundance in patients with SKCM. As an ARG, TNFSF10 has a potential capacity in predicting the prognosis of SKCM patients, meanwhile, may be a novel immunotherapy marker for SKCM.

13.
J Transl Med ; 21(1): 600, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674204

RESUMEN

BACKGROUND: A chromobox homologue 3 (CBX3) is elevated in various cancers and significantly contributes to the promotion of malignant behavior; despite this, its exact involvement in clear cell renal cell carcinoma (ccRCC) is yet unknown. METHODS: The Cancer Genome Atlas database served to evaluate CBX3 production and its connection to survival in patients with ccRCC. Our team evaluated the effects of knockdown of CBX3 levels in ccRCC cell populations using in vitro together with in vivo models. CBX3, proteins related to death, and epithelial-to-mesenchymal transition (EMT)-related proteins were measured in ccRCC cells using western blotting and immunohistochemical assays. Through the analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and GeneOntology (GO) and Gene Set Enrichment Analysis (GSEA), the biological processes and signal pathways related to CBX3 expression were identified. Immune-related activity reduced by CBX3 was assessed using various online tools. RESULTS: Both genomic and protein expression showed that CBX3 was upregulated in ccRCC. Further functional analyses revealed that CBX3 played a crucial role in enhancing cell growth, migration, and EMT in vitro along with in vivo. Moreover, the study results provided distinct mechanistic evidence that CBX3 exerts its pathological functions in ccRCC by activating the PI3K/AKT pathway. Finally, immunoassays revealed that CBX3, a possible biomarker of ccRCC, was significantly associated with immunity. CONCLUSIONS: Our results suggest that the overexpression of CBX3 promotes ccRCC advancement through PI3K/AKT activation and even immunological dysregulation, making it a potentially viable and beneficial therapeutic target.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Neoplasias Renales/genética , Proteínas Cromosómicas no Histona/genética
14.
Biosensors (Basel) ; 13(1)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36671946

RESUMEN

A rapid and intuitive method for detecting Vibrio parahaemolyticus (VP) was established by a designed reaction vessel which coupled CRISPR/Cas12a with loop-mediated isothermal nucleic acid amplification (LAMP). There were two spaces in the vessel-holding LAMP reaction solution and CRISPR reaction solution, respectively, which were separated with a polyvinyl alcohol (PVA) membrane. The PVA membrane could be dissolved with a water solution. The thermolabile hemolysin (TLH) gene of VP was employed as the detection target. After the target sequence of the TLH gene was amplified with LAMP, the PVA membrane would be dissolved and the CRISPR reaction solution mixed with the LAMP reaction solution. In this way, amplicons could be detected with CRISPR/Cas12a in the reaction vessel. The fluorescent signals produced by the positive samples were clearly identified by the naked eye under a UV light, while the negative samples were dark. The whole detection procedure could be finished within 35 min with a detection limit of 100 copies/µL. The designed reaction vessel is easy to produce and can effectively prevent contamination due to the opening of the reaction vessel after the LAMP reaction. Thus, it will have the potential to provide a new solution for rapid detection in the field.


Asunto(s)
Alcohol Polivinílico , Vibrio parahaemolyticus , Sistemas CRISPR-Cas , Técnicas de Amplificación de Ácido Nucleico/métodos , Vibrio parahaemolyticus/genética , Catéteres
15.
Front Immunol ; 13: 919145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211371

RESUMEN

Introduction: Skin cutaneous melanoma (SKCM) is the world's fourth deadliest cancer, and advanced SKCM leads to a poor prognosis. Novel biomarkers for SKCM diagnosis and prognosis are urgently needed. Long non-coding RNAs (lncRNAs) provide various biological functions and have been proved to play a significant role in tumor progression. Single-cell RNA sequencing (scRNA-seq) enables genome analysis at the single-cell level. This study explored prognostic lncRNAs in SKCM based on scRNA-seq and bulk RNA sequencing data. Materials and methods: The TCGA cohort and melanoma samples in the GEO database (GSE72056, GSE19234, GSE15605, GSE7553, and GSE81383) were included in this study. Marker genes were filtered, and ensemble lncRNAs were annotated. The clinical significance of selected lncRNAs was verified through TCGA and GEO dataset analysis. SiRNA transfection, wound-healing and transwell assays were performed to evaluate the effect of PRRT3-AS1 on cellular function. Immune infiltration of the selected lncRNAs was also exhibited. Results: A 5-marker-lncRNAs model of significant prognostic value was constructed based on GSE72056 and the TCGA cohort. PRRT3-AS1 combined with DANCR was then found to provide significant prognostic value in SKCM. PRRT3-AS1 was filtered for its higher expression in more advanced melanoma and significant prognosis value. Cellular function experiments in vitro revealed that PRRT3-AS1 may be required for cancer cell migration in SKCM. PRRT3-AS1 was found to be related to epithelial-mesenchymal transition (EMT) signaling pathways. DNA methylation of PRRT3-AS1 was negatively related to PRRT3-AS1 expression and showed significant prognosis value. In addition, PRRT3-AS1 may suppress immune infiltration and be involved in immunotherapy resistance. Conclusion: PRRT3-AS1 may be a diagnostic and prognostic biomarker of SKCM.


Asunto(s)
Melanoma , ARN Largo no Codificante , Neoplasias Cutáneas , Biomarcadores , Análisis de Datos , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/genética , Melanoma/terapia , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño , Melanoma Cutáneo Maligno
16.
Front Genet ; 13: 764957, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957696

RESUMEN

Background: Clear cell renal cell carcinoma (ccRCC) is the most frequent type of kidney cancer. Nck-associated protein 1 (NCKAP1) is associated with poor prognosis and tumor progression in several cancer types, but the function and prognostic value of NCKAP1 in ccRCC remain poorly understood. Methods: Using the Ualcan database, we evaluated the correlation between NCKAP1 expression and clinical features of ccRCC. These data were validated by immunohistochemical staining for NCKAP1 in a cohort of ccRCC patients. We assessed the prognostic value of NCKAP1 using GEPIA2 survival analysis. NCKAP1 function was characterized in vitro and in vivo using NCKAP1-overexpression ACHN cell lines. The LinkedOmics and GSCALite databases were used to investigate identify potential NCKAP1-targeted medicines that may play a role in the treatment of ccRCC. The impact of NCKAP1 expression on immune infiltration was also evaluated. Results: NCKAP1 was significantly downregulated in ccRCC and correlated with advanced clinicopathological features and poor prognosis. Overexpression of NCKAP1 in ACHN cells reduced proliferation, invasion and migration capacity in vitro and inhibited tumor growth in vivo. According to the LinkedOmics, GSCALite and TIMER databases, NCKAP1 and related genes function primarily in ribosomal signaling, oxidative phosphorylation, TGF-ß, and EMT-related signaling pathways. NCKAP1 was also shown to positively correlate with immune cell types, biomarkers, and immune checkpoints in ccRCCs. Conclusions: NCKAP1 may play a vital tumor-suppressive role in ccRCC and is potentially a useful prognostic biomarker.

17.
Front Surg ; 9: 928922, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846975

RESUMEN

Objective: To observe the anesthetic effect of dexmedetomidine combined with spinal anesthesia in hip arthroplasty, and to analyze the effects of dexmedetomidine on postoperative stress response, incidence of delirium, immune function and inflammatory indicators. Methods: A total of 42 patients who underwent hip replacement in our hospital from March 2020 to June 2021 were selected as the research subjects and randomly divided into the control group and the observation group, 21 cases in each group. The control group was given intraspinal anesthesia, and the observation group was given dexmedetomidine on this basis. The onset time and maintenance time of sensory and motor nerve block were recorded. Stress response indexes [cortisol (Cor), blood glucose (Glu), adrenaline (E), noadrenaline (NE)], T lymphocyte subsets (CD3+, CD4+, CD8+, CD4+/CD8+), inflammatory indexes [tumor necrosis factor -α (TNF-α) and interleukin-6 (IL-6)] were detected before and after operation, and the incidence of postoperative delirium in both groups was recorded. Results: The onset time of sensory nerve block and motor block in the observation group were lower than those in the control group, and the retention time of sensory nerve block and motor nerve block were higher than those in the control group (P < 0.05). After surgery, the levels of Cor, Glu, E and NE in the observation group were lower than those in the control group (P < 0.05). After surgery, the incidence of postoperative delirium in the observation group (4.79%) was lower than that in the control group (28.57%) (P < 0.05). After surgery, the levels of CD3+, CD4+, CD8+, and CD4+/CD8+ in the observation group were higher than those in the control group (P < 0.05). After surgery, the levels of TNF-α and IL-6 in the observation group were lower than those in the control group (P < 0.05). Conclusion: The combined use of dexmedetomidine and intraspinal anesthesia has good anesthesia effect in hip joint replacement, which can greatly reduce the stress response of patients, reduce the incidence of postoperative delirium, and effectively restore the immune function of patients, reduce the level of inflammatory response, and has high clinical application value.

18.
Anal Biochem ; 643: 114593, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35157895

RESUMEN

Amplification technologies such as polymerase chain reaction (PCR) play an important role in nucleic acid detection. However, they require bulky and sophisticated thermal cycling instrument, as well as are prone to get false-positive results due to amplicon contamination. Currently, CRISPR/Cas system has become an increasingly popular diagnostic tool for nucleic acid with the discovery of its trans-cleavage activity which can degrade single-stranded DNA or RNA at a very high turnover rate. This inherent signal amplification capability allows CRISPR/Cas system to detect unamplified nucleic acids. Here, we reviewed the recent advances of CRISPR-based amplification-free methods for nucleic acid detection. With the assistance of various signal enhancement strategies, the detection sensitivity could be comparable to that of amplification-based methods. We then presented the pros and cons of these methods. And the subsistent challenges including sample preparation, off-target effect, sequences limit, quantitative and multiplex detection were further discussed in this review. It is probable for CRISPR-powered detection methods to pave the road for rapid, cheap, highly sensitive and specific on-site detection without amplification.


Asunto(s)
Sistemas CRISPR-Cas/genética , ADN/genética , ARN/genética
19.
Oxid Med Cell Longev ; 2021: 4586319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956437

RESUMEN

Breast cancer (BRCA) is a malignant tumor with a high incidence and poor prognosis in females. However, its pathogenesis remains unclear. In this study, based on bioinformatic analysis, we found that LINC00467 was highly expressed in BRCA and was associated with tumor metastasis and poor prognosis. The genomic and epigenetic analysis showed that LINC00467 may also be regulated by copy number amplification (CNA), chromatin openness, and DNA methylation. In vitro experiments showed that it could promote the proliferation, migration, and invasion of BRCA cells. Competitive endogenous RNA (ceRNA) regulatory network analysis and weighted gene coexpression network analysis (WGCNA) suggested that LINC00467 may play a role in signaling pathways of peroxisomal lipid metabolism, immunity, and others through microRNAs (miRNAs) targeting transforming growth factor beta 2 (TGFB2). In addition, copy number amplification and high expression of LINC00467 were associated with the low infiltration of CD8+ and CD4+ T cells. In conclusion, we found that LINC00467, driven by copy number amplification and DNA demethylation, may be a potential biomarker for the diagnosis and prognosis of BRCA and a tumor promoter acting as a potential therapeutic target for BRCA as well.


Asunto(s)
Neoplasias de la Mama/genética , Variaciones en el Número de Copia de ADN/genética , Regulación Neoplásica de la Expresión Génica/genética , Metabolismo de los Lípidos/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama/mortalidad , Desmetilación del ADN , Femenino , Humanos , Análisis de Supervivencia , Transfección
20.
Front Immunol ; 12: 722469, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804012

RESUMEN

The diacylglycerol kinases (DGKs) are a family of enzymes responsible for the conversion of diacylglycerol (DAG) to phosphatidic acid (PA). In addition to their primary function in lipid metabolism, DGKs have recently been identified as potential therapeutic targets in multiple cancers, including glioblastoma (GBM) and melanoma. Aside from its tumorigenic properties, DGKα is also a known promoter of T-cell anergy, supporting a role as a recently-recognized T cell checkpoint. In fact, the only significant phenotype previously observed in Dgka knockout (KO) mice is the enhancement of T-cell activity. Herein we reveal a novel, macrophage-specific, immune-regulatory function of DGKα. In bone marrow-derived macrophages (BMDMs) cultured from wild-type (WT) and KO mice, we observed increased responsiveness of KO macrophages to diverse stimuli that yield different phenotypes, including LPS, IL-4, and the chemoattractant MCP-1. Knockdown (KD) of Dgka in a murine macrophage cell line resulted in similar increased responsiveness. Demonstrating in vivo relevance, we observed significantly smaller wounds in Dgka-/- mice with full-thickness cutaneous burns, a complex wound healing process in which macrophages play a key role. The burned area also demonstrated increased numbers of macrophages. In a cortical stab wound model, Dgka-/- brains show increased Iba1+ cell numbers at the needle track versus that in WT brains. Taken together, these findings identify a novel immune-regulatory checkpoint function of DGKα in macrophages with potential implications for wound healing, cancer therapy, and other settings.


Asunto(s)
Diacilglicerol Quinasa/metabolismo , Macrófagos/metabolismo , Linfocitos T/citología , Animales , Diacilglicerol Quinasa/genética , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/metabolismo , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...