Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Imaging Radiat Oncol ; 30: 100577, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38707629

RESUMEN

Background and purpose: Radiation-induced erectile dysfunction (RiED) commonly affects prostate cancer patients, prompting clinical trials across institutions to explore dose-sparing to internal-pudendal-arteries (IPA) for preserving sexual potency. IPA, challenging to segment, isn't conventionally considered an organ-at-risk (OAR). This study proposes a deep learning (DL) auto-segmentation model for IPA, using Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) or CT alone to accommodate varied clinical practices. Materials and methods: A total of 86 patients with CT and MRI images and noisy IPA labels were recruited in this study. We split the data into 42/14/30 for model training, testing, and a clinical observer study, respectively. There were three major innovations in this model: 1) we designed an architecture with squeeze-and-excite blocks and modality attention for effective feature extraction and production of accurate segmentation, 2) a novel loss function was used for training the model effectively with noisy labels, and 3) modality dropout strategy was used for making the model capable of segmentation in the absence of MRI. Results: Test dataset metrics were DSC 61.71 ± 7.7 %, ASD 2.5 ± .87 mm, and HD95 7.0 ± 2.3 mm. AI segmented contours showed dosimetric similarity to expert physician's contours. Observer study indicated higher scores for AI contours (mean = 3.7) compared to inexperienced physicians' contours (mean = 3.1). Inexperienced physicians improved scores to 3.7 when starting with AI contours. Conclusion: The proposed model achieved good quality IPA contours to improve uniformity of segmentation and to facilitate introduction of standardized IPA segmentation into clinical trials and practice.

2.
Radiother Oncol ; 197: 110178, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38453056

RESUMEN

OBJECTIVE: We explore the potential dosimetric benefits of reducing treatment volumes through daily adaptive radiation therapy for head and neck cancer (HNC) patients using the Ethos system/Intelligent Optimizer Engine (IOE). We hypothesize reducing treatment volumes afforded by daily adaption will significantly reduce the dose to adjacent organs at risk. We also explore the capability of the Ethos IOE to accommodate this highly conformal approach in HNC radiation therapy. METHODS: Ten HNC patients from a phase II trial were chosen, and their cone-beam CT (CBCT) scans were uploaded to the adaptive RT (ART) emulator. A new initial reference plan was generated using both a 1 mm and 5 mm planning target volume (PTV) expansion. Daily adaptive ART plans (1 mm) were simulated from the clinical CBCT taken every fifth fraction. Additionally, using physician-modified ART contours the larger 5 mm plan was recalculated on this recontoured on daily anatomy. Changes in target and OAR contours were measured using Dice coefficients as a surrogate of clinician effort. PTV coverage and organ-at-risk (OAR) doses were statistically compared, and the robustness of each ART plan was evaluated at fractions 5 and 35 to observe if OAR doses were within 3 Gy of pre-plan. RESULTS: This study involved six patients with oropharynx and four with larynx cancer, totaling 70 adaptive fractions. The primary and nodal gross tumor volumes (GTV) required the most adjustments, with median Dice scores of 0.88 (range: 0.80-0.93) and 0.83 (range: 0.66-0.91), respectively. For the 5th and 35th fraction plans, 80 % of structures met robustness criteria (quartile 1-3: 67-100 % and 70-90 %). Adaptive planning improved median PTV V100% coverage for doses of 70 Gy (96 % vs. 95.6 %), 66.5 Gy (98.5 % vs. 76.5 %), and 63 Gy (98.9 % vs. 74.9 %) (p < 0.03). Implementing ART with total volume reduction yielded median dose reductions of 7-12 Gy to key organs-at-risk (OARs) like submandibular glands, parotids, oral cavity, and constrictors (p < 0.05). CONCLUSIONS: The IOE enables feasible daily ART treatments with reduced margins while enhancing target coverage and reducing OAR doses for HNC patients. A phase II trial recently finished accrual and forthcoming analysis will determine if these dosimetric improvements correlate with improved patient-reported outcomes.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Estudios de Factibilidad , Neoplasias de Cabeza y Cuello , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Simulación por Computador
3.
Phys Imaging Radiat Oncol ; 29: 100546, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38369990

RESUMEN

Background and Purpose: Online cone-beam-based adaptive radiotherapy (ART) adjusts for anatomical changes during external beam radiotherapy. However, limited cone-beam image quality complicates nodal contouring. Despite this challenge, artificial-intelligence guided deformation (AID) can auto-generate nodal contours. Our study investigated the optimal use of such contours in cervical online cone-beam-based ART. Materials and Methods: From 136 adaptive fractions across 21 cervical cancer patients with nodal disease, we extracted 649 clinically-delivered and AID clinical target volume (CTV) lymph node boost structures. We assessed geometric alignment between AID and clinical CTVs via dice similarity coefficient, and 95% Hausdorff distance, and geometric coverage of clinical CTVs by AID planning target volumes by false positive dice. Coverage of clinical CTVs by AID contour-based plans was evaluated using D100, D95, V100%, and V95%. Results: Between AID and clinical CTVs, the median dice similarity coefficient was 0.66 and the median 95 % Hausdorff distance was 4.0 mm. The median false positive dice of clinical CTV coverage by AID planning target volumes was 0. The median D100 was 1.00, the median D95 was 1.01, the median V100% was 1.00, and the median V95% was 1.00. Increased nodal volume, fraction number, and daily adaptation were associated with reduced clinical CTV coverage by AID-based plans. Conclusion: In one of the first reports on pelvic nodal ART, AID-based plans could adequately cover nodal targets. However, physician review is required due to performance variation. Greater attention is needed for larger, daily-adapted nodes further into treatment.

4.
Adv Radiat Oncol ; 9(1): 101319, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38260220

RESUMEN

Purpose: Recently developed online adaptive radiation therapy (OnART) systems enable frequent treatment plan adaptation, but data supporting a dosimetric benefit in postoperative head and neck radiation therapy (RT) are sparse. We performed an in silico dosimetric study to assess the potential benefits of a single versus weekly OnART in the treatment of patients with head and neck squamous cell carcinoma in the adjuvant setting. Methods and Materials: Twelve patients receiving conventionally fractionated RT over 6 weeks and 12 patients receiving hypofractionated RT over 3 weeks on a clinical trial were analyzed. The OnART emulator was used to virtually adapt either once midtreatment or weekly based on the patient's routinely performed cone beam computed tomography. The planning target volume (PTV) coverage, dose heterogeneity, and cumulative dose to the organs at risk for these 2 adaptive approaches were compared with the nonadapted plan. Results: In total, 13, 8, and 3 patients had oral cavity, oropharynx, and larynx primaries, respectively. In the conventionally fractionated RT cohort, weekly OnART led to a significant improvement in PTV V100% coverage (6.2%), hot spot (-1.2 Gy), and maximum cord dose (-3.1 Gy), whereas the mean ipsilateral parotid dose increased modestly (1.8 Gy) versus the nonadapted plan. When adapting once midtreatment, PTV coverage improved with a smaller magnitude (0.2%-2.5%), whereas dose increased to the ipsilateral parotid (1.0-1.1 Gy) and mandible (0.2-0.7 Gy). For the hypofractionated RT cohort, similar benefit was observed with weekly OnART, including significant improvement in PTV coverage, hot spot, and maximum cord dose, whereas no consistent dosimetric advantage was seen when adapting once midtreatment. Conclusions: For head and neck squamous cell carcinoma adjuvant RT, there was a limited benefit of single OnART, but weekly adaptations meaningfully improved the dosimetric criteria, predominantly PTV coverage and dose heterogeneity. A prospective study is ongoing to determine the clinical benefit of OnART in this setting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...