Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673910

RESUMEN

Endothelial cell (EC) injury is a crucial contributor to the progression of diabetic kidney disease (DKD), but the specific EC populations and mechanisms involved remain elusive. Kidney ECs (n = 5464) were collected at three timepoints from diabetic BTBRob/ob mice and non-diabetic littermates. Their heterogeneity, transcriptional changes, and alternative splicing during DKD progression were mapped using SmartSeq2 single-cell RNA sequencing (scRNAseq) and elucidated through pathway, network, and gene ontology enrichment analyses. We identified 13 distinct transcriptional EC phenotypes corresponding to different kidney vessel subtypes, confirmed through in situ hybridization and immunofluorescence. EC subtypes along nephrons displayed extensive zonation related to their functions. Differential gene expression analyses in peritubular and glomerular ECs in DKD underlined the regulation of DKD-relevant pathways including EIF2 signaling, oxidative phosphorylation, and IGF1 signaling. Importantly, this revealed the differential alteration of these pathways between the two EC subtypes and changes during disease progression. Furthermore, glomerular and peritubular ECs also displayed aberrant and dynamic alterations in alternative splicing (AS), which is strongly associated with DNA repair. Strikingly, genes displaying differential transcription or alternative splicing participate in divergent biological processes. Our study reveals the spatiotemporal regulation of gene transcription and AS linked to DKD progression, providing insight into pathomechanisms and clues to novel therapeutic targets for DKD treatment.


Asunto(s)
Empalme Alternativo , Nefropatías Diabéticas , Células Endoteliales , Análisis de la Célula Individual , Transcriptoma , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Ratones , Análisis de la Célula Individual/métodos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Riñón/metabolismo , Riñón/patología , Regulación de la Expresión Génica , Transcripción Genética , Perfilación de la Expresión Génica/métodos , Masculino
2.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207234

RESUMEN

Filamin A (FLNA) is a large actin-binding cytoskeletal protein that is important for cell motility by stabilizing actin networks and integrating them with cell membranes. Interestingly, a C-terminal fragment of FLNA can be cleaved off by calpain to stimulate adaptive angiogenesis by transporting multiple transcription factors into the nucleus. Recently, increasing evidence suggests that FLNA participates in the pathogenesis of cardiovascular and respiratory diseases, in which the interaction of FLNA with transcription factors and/or cell signaling molecules dictate the function of vascular cells. Localized FLNA mutations associate with cardiovascular malformations in humans. A lack of FLNA in experimental animal models disrupts cell migration during embryogenesis and causes anomalies, including heart and vessels, similar to human malformations. More recently, it was shown that FLNA mediates the progression of myocardial infarction and atherosclerosis. Thus, these latest findings identify FLNA as an important novel mediator of cardiovascular development and remodeling, and thus a potential target for therapy. In this update, we summarized the literature on filamin biology with regard to cardiovascular cell function.


Asunto(s)
Enfermedades Cardiovasculares/genética , Filaminas/genética , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Filaminas/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
3.
Am J Physiol Endocrinol Metab ; 320(4): E846-E857, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33682459

RESUMEN

Many long noncoding RNAs (lncRNAs) are enriched in pancreatic islets and several lncRNAs are linked to type 2 diabetes (T2D). Although they have emerged as potential players in ß-cell biology and T2D, little is known about their functions and mechanisms in human ß-cells. We identified an islet-enriched lncRNA, TUNAR (TCL1 upstream neural differentiation-associated RNA), which was upregulated in ß-cells of patients with T2D and promoted human ß-cell proliferation via fine-tuning of the Wnt pathway. TUNAR was upregulated following Wnt agonism by a glycogen synthase kinase-3 (GSK3) inhibitor in human ß-cells. Reciprocally, TUNAR repressed a Wnt antagonist Dickkopf-related protein 3 (DKK3) and stimulated Wnt pathway signaling. DKK3 was aberrantly expressed in ß-cells of patients with T2D and displayed a synchronized regulatory pattern with TUNAR at the single cell level. Mechanistically, DKK3 expression was suppressed by the repressive histone modifier enhancer of zeste homolog 2 (EZH2). TUNAR interacted with EZH2 in ß-cells and facilitated EZH2-mediated suppression of DKK3. These findings reveal a novel cell-specific epigenetic mechanism via islet-enriched lncRNA that fine-tunes the Wnt pathway and subsequently human ß-cell proliferation.NEW & NOTEWORTHY The discovery that long noncoding RNA TUNAR regulates ß-cell proliferation may be important in designing new treatments for diabetes.


Asunto(s)
Proliferación Celular/genética , Células Secretoras de Insulina/fisiología , ARN Largo no Codificante/fisiología , Vía de Señalización Wnt/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Proteína Potenciadora del Homólogo Zeste 2/genética , Epigénesis Genética/fisiología , Humanos , Secreción de Insulina/genética , Células Secretoras de Insulina/patología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Regulación hacia Arriba/genética
4.
PLoS One ; 13(4): e0196601, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29702679

RESUMEN

Beta cell dysfunction accompanies and drives the progression of type 2 diabetes mellitus (T2D), but there are few clinical biomarkers available to assess islet cell stress in humans. Secretagogin, a protein enriched in pancreatic islets, demonstrates protective effects on beta cell function in animals. However, its potential as a circulating biomarker released from human beta cells and islets has not been studied. In this study primary human islets, beta cells and plasma samples were used to explore secretion and expression of secretagogin in relation to the T2D pathology. Secretagogin was abundantly and specifically expressed and secreted from human islets. Furthermore, T2D patients had an elevated plasma level of secretagogin compared with matched healthy controls, which was confirmed in plasma of diabetic mice transplanted with human islets. Additionally, the plasma secretagogin level of the human cohort had an inverse correlation to clinical assessments of beta cell function. To explore the mechanism of secretagogin release in vitro, human beta cells (EndoC-ßH1) were exposed to elevated glucose or cellular stress-inducing agents. Secretagogin was not released in parallel with glucose stimulated insulin release, but was markedly elevated in response to endoplasmic reticulum stressors and cytokines. These findings indicate that secretagogin is a potential novel biomarker, reflecting stress and islet cell dysfunction in T2D patients.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Islotes Pancreáticos/metabolismo , Secretagoginas/sangre , Adulto , Anciano , Animales , Biomarcadores/sangre , Núcleo Celular/metabolismo , Estudios de Cohortes , Citocinas/metabolismo , Citoplasma/metabolismo , Diabetes Mellitus Experimental/sangre , Retículo Endoplásmico/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Glucagón/metabolismo , Glucosa/farmacología , Prueba de Tolerancia a la Glucosa , Humanos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/fisiopatología , Trasplante de Islotes Pancreáticos , Masculino , Ratones , Persona de Mediana Edad
5.
PLoS One ; 12(8): e0182371, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28796801

RESUMEN

Pregnancy is associated with increased ß-cell proliferation driven by prolactin. Long noncoding RNAs (lncRNA) are the most abundant RNA species in the mammalian genome, yet, their functional importance is mainly elusive. AIMS/HYPOTHESIS: This study tests the hypothesis that lncRNAs regulate ß-cell proliferation in response to prolactin in the context of ß-cell mass compensation in pregnancy. METHODS: The expression profile of lncRNAs in mouse islets at day 14.5 of pregnancy was explored by a bioinformatics approach, further confirmed by quantitative PCR at different days of pregnancy, and islet specificity was evaluated by comparing expression in islets versus other tissues. In order to establish the role of the candidate lncRNAs we studied cell proliferation in mouse islets and the MIN6 ß-cell line by EdU incorporation and cell count. RESULTS: We found that a group of lncRNAs is differentially regulated in mouse islets at 14.5 days of pregnancy. At different stages of pregnancy, these lncRNAs are dynamically expressed, and expression is prolactin dependent in mouse islets and MIN6 cells. One of those lncRNAs, Gm16308 (Lnc03), is dynamically regulated during pregnancy, prolactin-dependent and islet-enriched. Silencing Lnc03 in primary ß-cells and MIN6 cells inhibits, whereas over-expression stimulates, proliferation even in the absence of prolactin, demonstrating that Lnc03 regulates ß-cell growth. CONCLUSIONS/INTERPRETATION: During pregnancy mouse islet proliferation is correlated with dynamic changes of lncRNA expression. In particular, Lnc03 regulates mouse ß-cell proliferation and may be a crucial component of ß-cell proliferation in ß-cell mass adaptation in both health and disease.


Asunto(s)
Proliferación Celular , Células Secretoras de Insulina/fisiología , ARN Largo no Codificante/fisiología , Animales , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Embarazo , Prolactina/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Transcriptoma
6.
Circ Res ; 116(11): 1736-43, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25872946

RESUMEN

RATIONALE: Myeloid-derived C/EBP-homologous protein (CHOP), an effector of the endoplasmic reticulum stress-induced unfolded protein response, promotes macrophage apoptosis in advanced atherosclerosis, but the role of CHOP in vascular smooth muscle cells (VSMCs) in atherosclerosis is not known. OBJECTIVE: To investigate the role of CHOP in SM22α(+) VSMCs in atherosclerosis. METHODS AND RESULTS: Chop(fl/fl) mice were generated and crossed into the Apoe(-/-) and SM22α-CreKI(+) backgrounds. SM22α-CreKI causes deletion of floxed genes in adult SMCs. After 12 weeks of Western-type diet feeding, the content of α-actin-positive cells in aortic root lesions was decreased in Chop(fl/fl)SM22α-CreKI(+)Apoe(-/-) versus control Chop(fl/fl)Apoe(-/-) mice, and aortic explant-derived VSMCs from the VSMC-CHOP-deficient mice displayed reduced proliferation. Krüppel-like factor 4 (KLF4), a key suppressor of VSMC proliferation, was increased in lesions and aortic VSMCs from Chop(fl/fl)SM22α-CreKI(+)Apoe(-/-) mice, and silencing Klf4 in CHOP-deficient VSMCs restored proliferation. CHOP deficiency in aortic VSMCs increased KLF4 through 2 mechanisms mediated by the endoplasmic reticulum stress effector activating transcription factor 4: transcriptional induction of Klf4 mRNA and decreased proteasomal degradation of KLF4 protein. CONCLUSIONS: These findings in SM22α-CHOP-deficient mice imply that CHOP expression in SM22α(+) VSMCs promotes cell proliferation by downregulating KLF4. The mechanisms involve newly discovered roles of CHOP in the transcriptional and post-translational regulation of KLF4.


Asunto(s)
Aterosclerosis/metabolismo , Proliferación Celular , Miocitos del Músculo Liso/metabolismo , Factor de Transcripción CHOP/deficiencia , Actinas/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Aorta/citología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/patología , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Immunoblotting , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso Vascular/citología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Técnicas de Cultivo de Tejidos , Factor de Transcripción CHOP/genética
7.
Cardiovasc Res ; 105(2): 151-9, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25344364

RESUMEN

AIMS: Actin-binding protein filamin A (FLNA) regulates signal transduction important for cell locomotion, but the role of FLNA after myocardial infarction (MI) has not been explored. The main purpose of this study was to determine the impact of endothelial deletion of FLNA on post-MI remodelling of the left ventricle (LV). METHODS AND RESULTS: We found that FLNA is expressed in human and mouse endothelial cells (ECs) during MI. To determine the biological significance of endothelial expression of FLNA, we used mice that are deficient for endothelial FLNA by cross-breeding adult mice expressing floxed Flna (Flna(o/fl)) with mice expressing Cre under the vascular endothelial-specific cadherin promoter (VECadCre+). Male Flna(o/fl) and Flna(o/fl)/VECadCre+ mice were subjected to permanent coronary artery ligation to induce MI. Flna(o/fl)/VECadCre+ mice that were deficient for endothelial FLNA exhibited larger and thinner LV with impaired cardiac function as well as elevated plasma levels of NT-proBNP and decreased secretion of VEGF-A. The number of capillary structures within the infarcted areas was reduced in Flna(o/fl)/VECadCre+ hearts. ECs silenced for Flna mRNA expression exhibited impaired tubular formation and migration, secreted less VEGF-A, and produced lower levels of phosphorylated AKT and ERK1/2 as well as active RAC1. CONCLUSION: Deletion of FLNA in ECs aggravated MI-induced LV dysfunction and cardiac failure as a result of defective endothelial response and increased scar formation by impaired endothelial function and signalling.


Asunto(s)
Células Endoteliales/metabolismo , Filaminas/metabolismo , Ventrículos Cardíacos/fisiopatología , Infarto del Miocardio/metabolismo , Disfunción Ventricular Izquierda/genética , Remodelación Ventricular/genética , Animales , Filaminas/deficiencia , Insuficiencia Cardíaca/genética , Masculino , Ratones Transgénicos , Infarto del Miocardio/genética
8.
Proc Natl Acad Sci U S A ; 111(7): 2560-5, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550283

RESUMEN

The cellular response to hypoxia is regulated by hypoxia-inducible factor-1α and -2α (HIF-1α and -2α). We have discovered that filamin A (FLNA), a large cytoskeletal actin-binding protein, physically interacts with HIF-1α and promotes tumor growth and angiogenesis. Hypoxia induces a calpain-dependent cleavage of FLNA to generate a naturally occurring C-terminal fragment that accumulates in the cell nucleus. This fragment interacts with the N-terminal portion of HIF-1α spanning amino acid residues 1-390 but not with HIF-2α. In hypoxia this fragment facilitates the nuclear localization of HIF-1α, is recruited to HIF-1α target gene promoters, and enhances HIF-1α function, resulting in up-regulation of HIF-1α target gene expression in a hypoxia-dependent fashion. These results unravel an important mechanism that selectively regulates the nuclear accumulation and function of HIF-1α and potentiates angiogenesis and tumor progression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia de la Célula/fisiología , Filaminas/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neovascularización Patológica/genética , Animales , Inmunoprecipitación de Cromatina , Fluorescencia , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Inmunoprecipitación , Ratones , Ratones SCID , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Int J Cancer ; 128(4): 839-46, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20473907

RESUMEN

Deregulated hepatocyte growth factor (HGF)/c-MET axis has been correlated with poor clinical outcome and drug resistance in many human cancers. Identification of novel regulatory mechanisms influencing HGF/c-MET signaling may therefore be necessary to develop more effective cancer therapies. In our study, we show that multiple human cancer tissues and cells express filamin A (FLNA), a large cytoskeletal actin-binding protein, and expression of c-MET is significantly reduced in human tumor cells deficient for FLNA. The FLNA-deficient tumor cells exhibited poor migrative and invasive ability in response to HGF. On the other hand, the anchorage-dependent and independent tumor cell proliferation was not altered by HGF. The FLNA-deficiency specifically attenuated the activation of the c-MET downstream signaling molecule AKT in response to HGF stimulation. Furthermore, FLNA enhanced c-MET promoter activity by its binding to SMAD2. The impact of FLNA deficiency on c-MET expression and HGF-mediated cell migration in human tumor cells was confirmed in primary mouse embryonic fibroblasts deficient for Flna. These data suggest that FLNA is one of the important regulators of c-MET signaling and HGF-induced tumor cell migration.


Asunto(s)
Movimiento Celular , Proteínas Contráctiles/fisiología , Factor de Crecimiento de Hepatocito/metabolismo , Proteínas de Microfilamentos/fisiología , Neoplasias/patología , Proteínas del Tejido Nervioso/fisiología , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Western Blotting , Adhesión Celular , Proliferación Celular , Ensayo de Unidades Formadoras de Colonias , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Filaminas , Regulación Neoplásica de la Expresión Génica , Humanos , Técnicas para Inmunoenzimas , Luciferasas/metabolismo , Ratones , Neoplasias/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Análisis de Matrices Tisulares , Células Tumorales Cultivadas
10.
J Cardiovasc Pharmacol Ther ; 15(2): 182-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20435992

RESUMEN

Cyclosporine A (CsA) has been shown to protect against myocardial ischemia and reperfusion (I/R) injury in small animal models. The aim of the current study was to evaluate the effects of CsA on myocardial I/R injury in a porcine model. Pigs were randomized between CsA (10mg/kg; n = 12) or placebo (n = 15) and anesthetized with either isoflurane (phase I) or pentobarbital (phase II). By catheterization, the left descending coronary artery was occluded for 45 minutes, followed by reperfusion for 2 hours. Hearts were stained to quantify area at risk (AAR) and infarct size (IS). Myocardial biopsies were obtained for terminal dUTP nick end labeling and immunoblot analysis of proapoptotic proteins (apoptosis-inducing factor [AIF], BCL2/adenovirus E1B 19-kd interacting protein 3 [BNIP-3], and active caspase-3). Cyclosporine A did not reduce IS/AAR compared with placebo (49% vs 41%, respectively; P = .21). Pigs anesthetized with isoflurane had lower IS/AAR than pigs anesthetized with pentobarbital (39% vs 51%, respectively; P = .03). This reduction in IS/AAR seemed to be attenuated by CsA. Apoptosis-inducing factor protein expression was higher after CsA administration than after placebo (P = .02). Thus, CsA did not protect against I/R injury in this porcine model. The data suggest a possible deleterious interaction of CsA and isoflurane.


Asunto(s)
Ciclosporina/farmacología , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Infarto del Miocardio/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Anestésicos/efectos adversos , Anestésicos/farmacología , Animales , Factor Inductor de la Apoptosis/metabolismo , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Interacciones Farmacológicas , Femenino , Hemodinámica , Isoflurano/efectos adversos , Isoflurano/farmacología , Proteínas de la Membrana/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Mitocondriales , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Pentobarbital/efectos adversos , Pentobarbital/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Distribución Aleatoria , Porcinos
11.
Biochem Biophys Res Commun ; 396(2): 359-63, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20417618

RESUMEN

Cyclin-dependent kinase inhibitors, p21(Cip1) and p27(Kip1), are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21(Cip1) or p27(Kip1) in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE(-/-) aortae, both apoE(-/-)/p21(-/-) and apoE(-/-)/p27(-/-) aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27(Kip1) accelerated plaque formation significantly more than p21(-/-) in apoE(-/-) mice. This increased plaque formation was in parallel with increased intima/media area ratios. Deficiency of p21(Cip1) and p27(Kip1) accelerates atherogenesis in apoE(-/-) mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.


Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/deficiencia , Animales , Aorta/metabolismo , Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Proliferación Celular , Colesterol/administración & dosificación , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/biosíntesis , Dieta Aterogénica , Ratones , Ratones Mutantes
12.
Biochem Biophys Res Commun ; 392(3): 283-8, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20060813

RESUMEN

Endoglin (ENG) promotes angiogenesis by enhancing activation of TGF-beta type I receptors ALK-1 and ALK-5. ALK-1 phosphorylates transcription factors SMAD1/5, which bind to BMP-responsive elements (BRE), whereas ALK-5 phosphorylates SMAD3, which binds to CAGA elements. Expression of ENG is increased during myocardial infarction (MI). We investigated which ENG signaling pathway is activated in endothelial cells during hypoxia. Expression of ENG, ALK-1, ALK-5, and phosphorylated SMAD1/3/5 by immunostaining and immunoblotting in a mouse model of myocardial infarction (MI) and in hypoxic human aortic endothelial cells (HAECs) was evaluated. Activation of BRE and CAGA was measured by luciferase assays in cells transfected with plasmids expressing ENG or ALK-1 and the number of cells was quantified. mRNA expression of the target genes of TGF-beta signaling, ID1 and BCL-X, was quantified by real-time RT-PCR. Expression of ENG, ALK-1 and phosphorylated SMAD1/5, but not ALK-5 or phosphorylated SMAD3, was significantly increased in hypoxic endothelial cells in vivo and in vitro. Overexpression of both ENG and ALK-1 significantly increased BRE but not CAGA activity, expression of ID1 and BCL-X and the number of HAECs at hypoxia. ENG/ALK-1 signaling is one of the factors that regulate endothelial cell activity during adaptive cardiac angiogenesis.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Antígenos CD/metabolismo , Endotelio Vascular/metabolismo , Infarto del Miocardio/metabolismo , Receptores de Superficie Celular/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Animales , Hipoxia de la Célula , Endoglina , Regulación de la Expresión Génica , Humanos , Proteína 1 Inhibidora de la Diferenciación/genética , Ratones , Infarto del Miocardio/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Elementos de Respuesta , Proteína smad3/metabolismo , Proteína bcl-X/genética
13.
Trends Cell Biol ; 20(2): 113-23, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20061151

RESUMEN

Filamins are large actin-binding proteins that stabilize delicate three-dimensional actin filament networks and link them to cellular membranes where they integrate cell architectural and signaling functions important for cell locomotion. Filamins have been shown to bind to proteins with diverse functions and are implicated in human genetic diseases including malformations of the skeleton, brain, and heart. Mouse models of filamin deficiency have advanced our understanding of the important roles filamins play in embryonic development and disease progression. These studies provide clear evidence that cytoskeletal filamin proteins integrate cell signaling, transcription and organ development. This review focuses on the emerging roles of filamins in cell signaling and transcription, with emphasis on cell motility and organ development.


Asunto(s)
Movimiento Celular/fisiología , Proteínas Contráctiles/metabolismo , Citoesqueleto/metabolismo , Proteínas de Microfilamentos/metabolismo , Organogénesis/fisiología , Transducción de Señal/fisiología , Animales , Anomalías Congénitas/genética , Anomalías Congénitas/metabolismo , Anomalías Congénitas/fisiopatología , Proteínas Contráctiles/genética , Citoesqueleto/genética , Citoesqueleto/ultraestructura , Modelos Animales de Enfermedad , Filaminas , Humanos , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Elementos Reguladores de la Transcripción/fisiología , Activación Transcripcional/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA