Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pharm Biol ; 61(1): 1401-1412, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37667488

RESUMEN

CONTEXT: Panax japonicus is the dried rhizome of Panax japonicus C.A. Mey. (Araliaceae). Saponins from Panax japonicus (SPJ) exhibit anti-oxidative and anti-aging effects. OBJECTIVE: We evaluated the neuroprotective effects of SPJ on aging rats. MATERIALS AND METHODS: Sprague-Dawley rats (18-months-old) were randomly divided into aging and SPJ groups (n = 8). Five-month-old rats were taken as the adult control (n = 8). The rats were fed a normal chow diet or the SPJ-containing diet (10 or 30 mg/kg) for 4 months. An in vitro model was established by d-galactose (d-Gal) in the SH-SY5Y cell line and pretreated with SPJ (25 and 50 µg/mL). The neuroprotection of SPJ was evaluated via Nissl staining, flow cytometry, transmission electron microscopy and Western blotting in vivo and in vitro. RESULTS: SPJ improved the neuronal degeneration and mitochondrial morphology that are associated with aging. Meanwhile, SPJ up-regulated the protein levels of mitofusin 2 (Mfn2) and optic atrophy 1 (Opa1) and down-regulated the protein level of dynamin-like protein 1 (Drp1) in the hippocampus of aging rats (p < 0.05 or p < 0.01 vs. 22 M). The in vitro studies also demonstrated that SPJ attenuated d-Gal-induced cell senescence concomitant with the improvement in mitochondrial function; SPJ, also up-regulated the Mfn2 and Opa1 protein levels, whereas the Drp1 protein level (p < 0.05 or p < 0.01 vs. d-Gal group) was down-regulated. DISCUSSION AND CONCLUSIONS: Further research on the elderly population will contribute to the development and utilization of SPJ for the treatment of neurodegenerative disorders.


Asunto(s)
Neuroblastoma , Panax , Anciano , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Envejecimiento , Galactosa , Mitocondrias
2.
J Toxicol Sci ; 48(9): 513-526, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37661368

RESUMEN

Perfluorooctane sulfonate (PFOS), an emerging environmental pollutant, is reported to cause neurotoxicity in animals and humans, but its underlying mechanisms are still unclear. We used in vivo models to investigate the effects of PFOS on cognition-related behaviors and related mechanisms. After 45 days of intragastric administration of PFOS (2 mg/kg or 8 mg/kg) in 7-week-old C57BL/6 mice, muscle strength, cognitive function and anxiety-like behavior were evaluated by a series of behavioral tests. The underling mechanisms of PFOS on impaired behaviors were evaluated by HE/Nissl staining, electron microscopy observation and western blot analysis. The results indicated that PFOS-exposed mice exhibited significant cognitive impairment, anxiety, neuronal degeneration and the abnormities of synaptic ultrastructure in the cortex and hippocampus. Western blot analysis indicated that PFOS exposure increased microtubule-associated protein light chain 3 (LC3) and decreased p62 protein levels, which may be associated with activation of autophagy leading to neuron damage. In summary, our results suggest that chronic exposure to PFOS adversely affects cognitive-related behavior in mice. These findings provide new mechanistic insights into PFOS-induced neurotoxicity.


Asunto(s)
Autofagia , Síndromes de Neurotoxicidad , Humanos , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Cognición , Proteínas Asociadas a Microtúbulos
3.
Carbohydr Polym ; 91(1): 169-74, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23044119

RESUMEN

Novel nanocomposites made from cellulose nanocrystals and waterborne polyurethane were employed as wool antifelting agents. The cellulose nanocrystals, prepared by acid hydrolysis of cellulose microcrystalline, are in rod form with lengths of 70-150 nm and diameters of 10-20 nm in aqueous suspension, respectively. After the two aqueous suspensions were mixed homogeneously, cellulose nanocrystal reinforced polyurethane composite (nanocomposite) films were prepared and evaluated by means of transmission electron microscopy, scanning electron microscopy and dynamic mechanical analysis. Then the nanocrystal films were applied onto surfaces of wools by a pad-dry-cure process with nanocomposites containing different cellulose nanocrystal contents. The results indicated that with increasing cellulose nanocrystal content from 0 to 1.0 wt%, the area-shrinking rate of the treated wool fabrics was decreased from 5.24% to 0.70%, and the tensile strength of the fabric was increased by 14.95% and decreased about 44% use of waterborne polyurethane.


Asunto(s)
Celulosa/química , Nanopartículas/química , Poliuretanos/química , Agua/química , Lana , Animales , Fenómenos Mecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA