Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 10(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36363738

RESUMEN

The creation of oral microcosms with reproducible composition is important for developing model systems of the oral microbiome. However, oral microbiomes vary substantially across individuals. To derive a reproducible composition from inocula sourced from different individuals, we tested whether selective conditions from cold storage and culturing in defined media would generate a reproducible community composition despite individual variations. In this pilot study, we collected dental plaque scrapings from three individuals, inoculated media under anaerobic conditions, and characterized the bacterial community compositions after cold storage and subsequent propagation in liquid media. Harvested cultures were extracted and bacterial composition was determined by 16S rRNA gene amplicon sequencing and the mothur pipeline. Our results show that samples from two out of three individuals clustered into a specific compositional type (termed "attractor" here). In addition, the samples from the third individual could adopt this attractor compositional type after propagation in vitro, even though its original composition did not display this type. These results indicate that simple selective environments could help create reproducible microcosms despite variation among dental plaque samples sourced from different individuals. The findings illustrate important parameters to consider for creating reproducible microcosms from the human oral microbiome.

2.
Front Microbiol ; 13: 820431, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602063

RESUMEN

Mining novel specific molecular targets and establishing efficient identification methods are significant for detecting Pseudomonas aeruginosa, which can enable P. aeruginosa tracing in food and water. Pangenome analysis was used to analyze the whole genomic sequences of 2017 strains (including 1,000 P. aeruginosa strains and 1,017 other common foodborne pathogen strains) downloaded from gene databases to obtain novel species-specific genes, yielding a total of 11 such genes. Four novel target genes, UCBPP-PA14_00095, UCBPP-PA14_03237, UCBPP-PA14_04976, and UCBPP-PA14_03627, were selected for use, which had 100% coverage in the target strain and were not present in nontarget bacteria. PCR primers (PA1, PA2, PA3, and PA4) and qPCR primers (PA12, PA13, PA14, and PA15) were designed based on these target genes to establish detection methods. For the PCR primer set, the minimum detection limit for DNA was 65.4 fg/µl, which was observed for primer set PA2 of the UCBPP-PA14_03237 gene. The detection limit in pure culture without pre-enrichment was 105 colony-forming units (CFU)/ml for primer set PA1, 103 CFU/ml for primer set PA2, and 104 CFU/ml for primer set PA3 and primer set PA4. Then, qPCR standard curves were established based on the novel species-specific targets. The standard curves showed perfect linear correlations, with R 2 values of 0.9901 for primer set PA12, 0.9915 for primer set PA13, 0.9924 for primer set PA14, and 0.9935 for primer set PA15. The minimum detection limit of the real-time PCR (qPCR) assay was 102 CFU/ml for pure cultures of P. aeruginosa. Compared with the endpoint PCR and traditional culture methods, the qPCR assay was more sensitive by one or two orders of magnitude. The feasibility of these methods was satisfactory in terms of sensitivity, specificity, and efficiency after evaluating 29 ready-to-eat vegetable samples and was almost consistent with that of the national standard detection method. The developed assays can be applied for rapid screening and detection of pathogenic P. aeruginosa, providing accurate results to inform effective monitoring measures in order to improve microbiological safety.

3.
Anal Biochem ; 646: 114647, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35289287

RESUMEN

Salmonella infection could come from eating contaminated meat or raw eggs, and drinking milk or water contaminated by Salmonella enteritidis. Therefore, it is necessary to explore a fast and easy method for the detection of S. enteritidis in these diverse samples. For this purpose, a novel particle size sensing tool was designed for ultrasensitive and accurate S. enteritidis detection. This assay consisted of rolling circle amplification (RCA) with dynamic light scattering (DLS) using gold nanoparticles (AuNPs) modified with DNA probe as DNA-AuNPs as the capture surface into a hybrid RCA-DLS assay combined with asymmetric polymerase chain reaction (aPCR) and subsequent detection. Under optimal experimental conditions, the novel hybrid RCA-DLS assay combined with aPCR for S. enteritidis reached a limit of detection (LOD) as low as 3 × 100 CFU/mL in pure culture. In spiked milk samples, the LOD was 2.0 × 100 CFU/mL without pre-enriched bacteria. The total time of RCA-DLS assay was about 6 h which including genomic DNA extraction, aPCR, RCA and DLS determination. The hybrid RCA-DLS assay combined with aPCR holds promise in the specific and sensitive S. enteritidis detection.


Asunto(s)
Nanopartículas del Metal , Salmonella enteritidis , ADN Bacteriano/análisis , ADN Bacteriano/genética , Dispersión Dinámica de Luz , Oro , Límite de Detección , Reacción en Cadena de la Polimerasa/métodos , Salmonella enteritidis/genética
4.
Biosens Bioelectron ; 190: 113394, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34118762

RESUMEN

To achieve rapid and sensitive detection of aflatoxin B1 (AFB1), we developed a polydimethylsiloxane gravity-driven cyclic microfluidic chip using the two-signal mode strategy. The structural design of the chip, together with the two-wavelength quantum dot ratio fluorescence, effectively eliminates the influence of environmental factors, improves the signal stability, and ensures that the final detection result positively correlates with the target concentration. Moreover, the theoretical analysis performed for the established physical model of the three-dimensional reaction interface inside the chip confirmed the improved reaction rate of immune adsorption in the microfluidic strategy. Overall, the method exhibited a wide analytic range (0.2-500 ng mL-1), low detection limit (0.06 ng mL-1), high specificity, good precision (coefficient of variation < 5%), excellent reusability (20 times, 89.1%) and satisfactory practical sample analysis capacity. Furthermore, the reusability and designability of this chip provide a reliable scheme for field detection of AFB1, analysis of other small molecules, and establishment of high-throughput detection systems under different conditions.


Asunto(s)
Técnicas Biosensibles , Puntos Cuánticos , Aflatoxina B1/análisis , Inmunoensayo , Límite de Detección , Microfluídica
5.
Front Microbiol ; 12: 605984, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815306

RESUMEN

The accurate and rapid classification of Salmonella serovars is an essential focus for the identification of isolates involved in disease in humans and animals. The purpose of current research was to identify novel sensitive and reliable serovar-specific targets and to develop PCR method for Salmonella C2 serogroups (O:8 epitopes) in food samples to facilitate timely treatment. A total of 575 genomic sequences of 16 target serovars belonging to serogroup C2 and 150 genomic sequences of non-target serovars were analysed by pan-genome analysis. As a result, four and three specific genes were found for serovars Albany and Hadar, respectively. Primer sets for PCR targeting these serovar-specific genes were designed and evaluated based on their specificity; the results showed high specificity (100%). The sensitivity of the specific PCR was 2.8 × 101-103 CFU/mL and 2.3 × 103-104 CFU/mL for serovars Albany and Hadar, respectively, and the detection limits were 1.04 × 103-104 CFU/g and 1.16 × 104-105 CFU/g in artificially contaminated raw pork samples. Furthermore, the potential functions of these serovar-specific genes were analysed; all of the genes were functionally unknown, except for one specific serovar Albany gene known to be a encoded secreted protein and one specific gene for serovars Hadar and Albany that is a encoded membrane protein. Thus, these findings demonstrate that pan-genome analysis is a precious method for mining new high-quality serovar-targets for PCR assays or other molecular methods that are highly sensitive and can be used for rapid detection of Salmonella serovars.

6.
Biosens Bioelectron ; 179: 113073, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33581428

RESUMEN

Listeria monocytogenes is an important foodborne pathogen that can cause listeriosis with high patient mortality. Accordingly, it is necessary to develop a L. monocytogenes detection platform with high specificity, sensitivity, and exploitability. CRISPR/Cas systems have shown great potential in the development of next-generation biosensors for nucleic acid detection, owing to the trans-cleavage capabilities of the Cas effector proteins. Herein, we introduce the trans-cleavage activity of CRISPR/Cas12a into an electrochemical biosensor (E-CRISPR), combined with recombinase-assisted amplification (RAA), to establish a cost-effective, specific and ultrasensitive method; namely RAA-based E-CRISPR. The concept behind this approach is that the target will induce the number change of the surface signaling probe (containing an electrochemical tag), which leads to a variation in the electron transfer of the electrochemical tag. The introduction of an RAA-based Cas12a system into the E-CRISPR sensor achieves a more prominent signal change between the presence and absence of the target. Under optimized conditions, RAA-based E-CRISPR can detect as low as 0.68 aM of genomic DNA and 26 cfu/mL of L. monocytogenes in pure cultures. More importantly, the RAA-based E-CRISPR enables rapid and ultrasensitive detection of L. monocytogenes in spiked and natural Flammulina velutipes samples. Moreover, no cross-reactivity with other non-target bacteria was observed. This system thus demonstrates to be a simple, high-sensitivity, and high-accuracy platform for L. monocytogenes detection.


Asunto(s)
Técnicas Biosensibles , Listeria monocytogenes , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN , Humanos , Listeria monocytogenes/genética
7.
Int J Food Microbiol ; 339: 109026, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33360877

RESUMEN

The abundant information provided by the pan-genome analysis approach reveals the diversity among Listeria monocytogenes serotypes. The objective of this study was to mine novel target genes using pan-genome analysis for multiplex PCR detection and differentiation of the major L. monocytogenes serotypes present in food. Pan-genome analysis and PCR validation revealed a total of 10 specific targets: one for lineage I, two for serogroup I.1, one for serogroup I.2, two for lineage II, one for serogroup II.1, three for lineage III. Primers for the novel targets were highly specific in individual reactions. The detection limits were 103-104 colony-forming units (CFU)/mL in pure bacterial cultures, meeting the requirements of molecular detection. Based on these novel targets, two new "lineage" multiplex PCR assays were developed to simultaneously distinguish between three lineages (I, II, and III) and five major serotypes (1/2a, 1/2b, 1/2c, 4b, and 4c) of L. monocytogenes. The detection limits of lineage I and lineage II&III mPCRs were 0.771 pg/µL and 1.76 pg/µL genomic DNA, respectively. The specificity of the mPCRs was robustly verified using other L. monocytogenes and non-L. monocytogenes serotypes. These results suggest that the two "lineage" multiplex PCRs based on novel targets offer a promising approach for accurate, sensitive, and rapid identification of L. monocytogenes serotypes.


Asunto(s)
Listeria monocytogenes/genética , Reacción en Cadena de la Polimerasa Multiplex , Serotipificación/métodos , Cartilla de ADN/genética , Microbiología de Alimentos , Genoma Bacteriano/genética , Listeriosis/microbiología , Serogrupo
8.
J Dairy Sci ; 102(4): 2954-2965, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30799110

RESUMEN

Escherichia coli O157:H7, Cronobacter spp., and Salmonella spp. are common food-borne pathogens in milk that may cause serious diseases. In the present study, we established a simple, rapid, and specific method to simultaneously detect viable E. coli O157:H7, Cronobacter spp., and Salmonella spp. in milk. Three specific genes, fliC from E. coli O157:H7, cgcA from Cronobacter spp., and invA from Salmonella spp., were selected and used to design primers and probes. False-positive results were eliminated with the use of a combined sodium deoxycholate (SD) and propidium monoazide (PMA) treatment. Using the optimized parameters, this SD-PMA treatment combined with multiplex real-time PCR (SD-PMA-mRT-PCR) detected E. coli O157:H7, Cronobacter spp. and Salmonella spp. respectively, at 102 cfu/mL in pure culture or artificially spiked skim milk samples. A reasonable recovery rate (from 100 to 107%) for detection of viable bacteria using the SD-PMA-mRT-PCR assay was obtained in the presence of dead bacteria at 107 cfu/mL. The SD-PMA-mRT-PCR method developed in this study can accurately detect and monitor combined contamination with E. coli O157:H7, Cronobacter spp., and Salmonella spp. in milk and milk products.


Asunto(s)
Cronobacter/aislamiento & purificación , Escherichia coli O157/aislamiento & purificación , Leche/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Salmonella/aislamiento & purificación , Animales , Azidas , Ácido Desoxicólico , Microbiología de Alimentos , Propidio/análogos & derivados , Sensibilidad y Especificidad
9.
J Dairy Sci ; 100(11): 8804-8813, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28865862

RESUMEN

Escherichia coli O157:H7 and Salmonella spp. in milk are 2 common pathogens that cause foodborne diseases. An accurate, rapid, specific method has been developed for the simultaneous detection of viable E. coli O157:H7 and Salmonella spp. in milk. Two specific genes, namely, fliC from E. coli O157:H7 and invA from Salmonella spp., were selected to design primers and probes. A combined treatment containing sodium deoxycholate (SDO) and propidium monoazide (PMA) was applied to detect viable E. coli O157:H7 and Salmonella spp. only. Traditional culture methods and SDO-PMA-multiplex real-time (mRT) PCR assay were applied to determine the number of viable E. coli O157:H7 and Salmonella spp. in cell suspensions with different proportions of dead cells. These methods revealed consistent findings regarding the detected viable cells. The detection limit of the SDO-PMA-mRT-PCR assay reached 102 cfu/mL for Salmonella spp. and 102 cfu/mL for E. coli O157:H7 in milk. The detection limit of SDO-PMA-mRT-PCR for E. coli O157:H7 and Salmonella spp. in milk was significantly similar even in the presence of 106 cfu/mL of 2 nontarget bacteria. The proposed SDO-PMA-mRT-PCR assay is a potential approach for the accurate and sensitive detection of viable E. coli O157:H7 and Salmonella spp. in milk.


Asunto(s)
Escherichia coli O157/aislamiento & purificación , Leche/microbiología , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Salmonella/aislamiento & purificación , Animales , Azidas , Bovinos , Cartilla de ADN , Microbiología de Alimentos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Propidio/análogos & derivados , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Salmonella/genética , Sensibilidad y Especificidad
10.
J Dairy Sci ; 99(12): 9550-9559, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27771087

RESUMEN

A rapid, reliable, and sensitive method for the detection of Cronobacter sakazakii, a common foodborne pathogen that may cause serious neonatal disease, has been developed. In this study, a rapid real-time quantitative PCR (qPCR) assay combined with sodium deoxycholate (SD) and propidium monoazide (PMA) was developed to detect C. sakazakii contamination in powdered infant formula (PIF). This method could eliminate the interference from dead or injured bacteria. Optimization studies indicated that SD and PMA at 0.08% (wt/vol) and 5µg/mL, respectively, were the most appropriate. In addition, qPCR, PMA-qPCR, SD-PMA-qPCR, and plate count assays were used to account for the number of viable bacteria in cell suspensions that were exposed to a 55°C water bath at different length of time. As a result, the viable number by PMA-qPCR showed significantly higher than of the number from SD-PMA-qPCR or plate counts. The number of viable bacteria was consistent between SD-PMA-qPCR and traditional plate counts, which indicated that SD treatment could eliminate the interference from dead or injured cells. Using the optimized parameters, the limit of detection with the SD-PMA-qPCR assay was 3.3×102 cfu/mL and 4.4×102 cfu/g in pure culture and in spiked PIF, respectively. A similar detection limit of 5.6×102 cfu/g was obtained in the presence of the Staphylococcus aureus (107 cfu/mL). The combined SD-PMA-qPCR assay holds promise for the rapid detection of viable C. sakazakii in PIF.


Asunto(s)
Cronobacter sakazakii/genética , Fórmulas Infantiles , Animales , Azidas , Ácido Desoxicólico , Microbiología de Alimentos , Viabilidad Microbiana , Propidio , Reacción en Cadena en Tiempo Real de la Polimerasa , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA