Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(7): 8960-8973, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329839

RESUMEN

Vacuum-free, solution-processable high-κ-oxide dielectrics are considered to be a key element for emerging low-cost flexible electronics. However, they usually suffer from low breakdown strength and frequency-dependent capacitance, which limit their broader applications. Here, we report a universal way to improve solution-based high-κ oxide dielectric properties (e.g., Al2O3, ZrO2, Ga2O3, Sc2O3, Ho2O3, and Sm2O3) by sulfate incorporation. In-depth characterization shows that sulfate incorporation could reduce hydrogen and oxygen vacancy-related defects in high-κ oxides, thereby improving the dielectric performance. The optimized S-doped high-κ oxides show smooth surface (rms < 0.20 nm), low leakage current (∼10-7 A/cm2@4 MV/cm), excellent dielectric breakdown strength (>10 MV/cm), and stable capacitance-frequency characteristics. Besides, oxide thin-film transistors based on these high-κ dielectrics exhibit excellent performance (e.g., mobility >20 cm2 V-1 s-1, on/off ratio of ∼107, threshold swing of ∼0.14 V dec-1, threshold voltage of ∼0 V, and hysteresis of ∼0.02 V). Thus, this work provides a general approach for the development of high-quality solution-based high-κ oxides for transistor circuitry.

2.
ACS Appl Mater Interfaces ; 15(46): 53725-53737, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37990903

RESUMEN

Rare earth oxides (REOs) can be used as high-κ gate dielectrics that are at the core of electronic devices. However, a bottleneck remains with regard to obtaining high-performance REO dielectrics due to the serious hygroscopic issue and high defect states. Here, a general boronization strategy is reported to enhance the high-κ REO gate dielectric performance. Complementary characterization reveals that boronization is capable of reducing oxygen vacancies/hydroxyl defects in REOs and suppressing moisture absorption, leading to the improvement of leakage current, breakdown strength (up to 9 MV/cm), and capacitance-frequency stability. Furthermore, oxide transistors based on boronized REO dielectrics demonstrate state-of-the-art device characteristics with a high mobility of 40 cm2/V s, a current on/off ratio of 108, a subthreshold swing of 82 mV/dec, a hysteresis of 0.05 V, and superior bias stress stability.

3.
Opt Express ; 31(10): 15653-15673, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157661

RESUMEN

The AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs) dominated by transverse-magnetic (TM) polarized emission suffer from extremely poor light extraction efficiency (LEE) from their top surface, which severely limits the device performance. In this study, the underlying physics of polarization-dependent light extraction mechanisms of AlGaN-based DUV LEDs has been explored in depth via simple Monte Carlo ray-tracing simulations with Snell's law. It is especially worth noting that the structures of the p-type electron blocking layer (p-EBL) and multi-quantum wells (MQWs) have a significant impact on light extraction behavior, especially for TM-polarized emission. Thus, an artificial vertical escape channel (named GLRV) has been constructed to efficiently extract the TM-polarized light through the top surface, by adjusting the structures of the p-EBL, MQWs, sidewalls, and using the adverse total internal reflection in a positive manner. The results show that the enhancement times of the top-surface LEE is up to 18 for TM-polarized emission in the 300 × 300 µm2 chip comprising a single GLRV structure, and further increases to 25 by dividing this single GLRV structure into a 4 × 4 micro-GLRV array structure. This study provides a new perspective for understanding and modulating the extraction mechanisms of polarized light to overcome the inherently poor LEE for the TM-polarized light.

4.
Discov Nano ; 18(1): 13, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36795193

RESUMEN

Large-area, continuous monolayer WS2 exhibits great potential for future micro-nanodevice applications due to its special electrical properties and mechanical flexibility. In this work, the front opening quartz boat is used to increase the amount of sulfur (S) vapor under the sapphire substrate, which is critical for achieving large-area films during the chemical vapor deposition processes. COMSOL simulations reveal that the front opening quartz boat will significantly introduce gas distribute under the sapphire substrate. Moreover, the gas velocity and height of substrate away from the tube bottom will also affect the substrate temperature. By carefully optimizing the gas velocity, temperature, and height of substrate away from the tube bottom, a large-scale continues monolayered WS2 film was achieved. Field-effect transistor based on the as-grown monolayer WS2 showed a mobility of 3.76 cm2V-1 s-1 and ON/OFF ratio of 106. In addition, a flexible WS2/PEN strain sensor with a gauge factor of 306 was fabricated, showing great potential for applications in wearable biosensors, health monitoring, and human-computer interaction.

5.
Sci Rep ; 10(1): 2764, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066791

RESUMEN

The time-of-flight (ToF) principle is a method used to measure distance and construct three-dimensional (3D) images by detecting the time or the phase difference between emitted and back-reflected optical flux. The ToF principle has been employed for various applications including light ranging and detection (LiDAR), machine vision and biomedical engineering; however, bulky system size and slow switching speed have hindered the widespread application of ToF technology. To alleviate these issues, a demonstration of hetero-integration of GaN-based high electron mobility transistors (HEMTs) and GaAs-based vertical cavity surface emitting lasers (VCSELs) on a single platform via a cold-welding method was performed. The hetero-integrated ToF sensors show superior switching performance when compared to silicon-transistor-based systems, miniaturizing size and exhibiting stable ranging and high-resolution depth-imaging. This hetero-integrated system of dissimilar material-based high-performance devices suggests a new pathway towards enabling high-resolution 3D imaging and inspires broader range application of heterogeneously integrated electronics and optoelectronics.

6.
Sensors (Basel) ; 19(9)2019 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-31083567

RESUMEN

The update of the Android system and the emergence of the dual-frequency GNSS chips enable smartphones to acquire dual-frequency GNSS observations. In this paper, the GPS L1/L5 and Galileo E1/E5a dual-frequency PPP (precise point positioning) algorithm based on RTKLIB and GAMP was applied to analyze the positioning performance of the Xiaomi Mi 8 dual-frequency smartphone in static and kinematic modes. The results showed that in the static mode, the RMS position errors of the dual-frequency smartphone PPP solutions in the E, N, and U directions were 21.8 cm, 4.1 cm, and 11.0 cm, respectively, after convergence to 1 m within 102 min. The PPP of dual-frequency smartphone showed similar accuracy with geodetic receiver in single-frequency mode, while geodetic receiver in dual-frequency mode has higher accuracy. In the kinematic mode, the positioning track of the smartphone dual-frequency data had severe fluctuations, the positioning tracks derived from the smartphone and the geodetic receiver showed approximately difference of 3-5 m.

7.
ACS Nano ; 12(2): 2027-2034, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29420011

RESUMEN

The rapid advancement of intelligent wearable electronics imposes the emergent requirement for power sources that are deformable, compliant, and stretchable. Power sources with these characteristics are difficult and challenging to achieve. The use of liquid metals as electrodes may provide a viable strategy to produce such power sources. In this work, we propose a liquid-metal-based triboelectric nanogenerator (LM-TENG) by employing Galinstan as the electrode and silicone rubber as the triboelectric and encapsulation layer. The small Young's modulus of the liquid metal ensures the electrode remains continuously conductive under deformations, stretching to a strain as large as ∼300%. The surface oxide layer of Galinstan effectively prevents the liquid Galinstan electrode from further oxidization and permeation into silicone rubber, yielding outstanding device stability. Operating in the single-electrode mode at 3 Hz, the LM-TENG with an area of 6 × 3 cm2 produces an open-circuit voltage of 354.5 V, transferred short-circuit charge of 123.2 nC, short-circuit current of 15.6 µA, and average power density of 8.43 mW/m2, which represent outstanding performance values for TENGs. Further, the LM-TENG maintains stable performance under various deformations, such as stretching, folding, and twisting. LM-TENGs in different forms, such as bulk-shaped, bracelet-like, and textile-like, are all able to harvest mechanical energy from human walking, arm shaking, or hand patting to sustainably drive wearable electronic devices.


Asunto(s)
Dispositivos Electrónicos Vestibles , Elasticidad , Conductividad Eléctrica , Suministros de Energía Eléctrica , Electrodos , Diseño de Equipo , Humanos , Metales/química , Nanotecnología/instrumentación , Óxidos/química , Silicio/química
8.
Nanoscale Res Lett ; 12(1): 409, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28618718

RESUMEN

We investigate the electric-field-dependent optical properties and electronic behaviors of GaS monolayer by using the first-principles calculations. A reversal of the dipole transition from E//c to E⊥c anisotropy is found with a critical external electric field of about 5 V/nm. Decomposed projected band contributions exhibit asymmetric electronic structures in GaS interlayers under the external electric field, which explains the evolution of the absorption preference. Spatial distribution of the partial charge and charge density difference reveal that the strikingly reversed optical anisotropy in GaS ML is closely linked to the additional crystal field originated from the external electric field. These results pave the way for experimental research and provide a new perspective for the application of the monolayer GaS-based two-dimensional electronic and optoelectronic devices.

9.
J Chem Phys ; 142(21): 214704, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-26049513

RESUMEN

Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS2 upon adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS2 with a low degree of charge transfer and accept charge from the monolayer, except for NH3, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS2 are not significantly altered upon adsorption of H2, H2O, NH3, and CO, whereas the lowest unoccupied molecular orbitals of O2, NO, and NO2 are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS2. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS2. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides.


Asunto(s)
Disulfuros/química , Compuestos de Tungsteno/química , Adsorción , Amoníaco/química , Monóxido de Carbono/química , Hidrógeno/química , Óxido Nítrico/química , Dióxido de Nitrógeno/química , Oxígeno/química , Teoría Cuántica , Propiedades de Superficie , Agua/química
10.
Sci Rep ; 4: 6662, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25322794

RESUMEN

Measuring associations is an important scientific task. A novel measurement method maximal information coefficient (MIC) was proposed to identify a broad class of associations. As foreseen by its authors, MIC implementation algorithm ApproxMaxMI is not always convergent to real MIC values. An algorithm called SG (Simulated annealing and Genetic) was developed to facilitate the optimal calculation of MIC, and the convergence of SG was proved based on Markov theory. When run on fruit fly data set including 1,000,000 pairs of gene expression profiles, the mean squared difference between SG and the exhaustive algorithm is 0.00075499, compared with 0.1834 in the case of ApproxMaxMI. The software SGMIC and its manual are freely available at http://lxy.depart.hebust.edu.cn/SGMIC/SGMIC.htm.

11.
J Chem Phys ; 133(12): 124706, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20886964

RESUMEN

Identically sized Au clusters are grown on the Si(111)-(7×7) surface by room temperature deposition of Au atoms and subsequent annealing at low-temperature. The topographical images investigated by in situ scanning tunneling microscopy show a bias-dependent feature. The current-voltage properties measured by scanning tunneling spectroscopy indicate some semiconducting characteristics of the Au adsorbed surface, which is attributable to the saturation of Si dangling bonds. These experimental results, combined with the simulated scanning tunneling microscopy images and the first-principles adsorption energy calculations, show that the Au cluster is most likely to have a Au(6)Si(3) structure. In the Au(6)Si(3) cluster, three adsorbed Au atoms replace the three Si center adatoms, forming a hollow triangle, while the replaced Si atoms and other three Au atoms connect into a hexagon locating within the triangle. The formation mechanism of this atomic configuration is intimately associated with the complicated chemical valences of Au and the specific annealing conditions.

12.
J Chem Phys ; 130(2): 024701, 2009 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-19154044

RESUMEN

Identical-sized Zn nanoclusters have been grown on Si(111)-(7x7) surfaces at room temperature. In situ scanning tunneling microscopy (STM) studies and first-principles total energy calculations show that room-temperature grown Zn nanoclusters tend to form the seven-Zn-atom structure with one excess Zn atom occupying characteristically the center of the cluster. The evolution of the surface electronic structures measured by scanning tunneling spectroscopy reveals that the formation of Zn nanoclusters is responsible for the saturation of the metallic Si adatom dangling bond states at about -0.3 and +0.5 V and causes the semiconducting characteristics of the nanoclusters. Furthermore, the Zn nanocluster in a faulted half unit cell empties the filled surface dangling bond state of the closest edge Si adatoms in the nearest neighboring uncovered unfaulted half unit cells at about -0.3 V, leading to the suppressed height of the closest edge Si adatoms in the filled-state STM images.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...