Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Adv Sci (Weinh) ; : e2407789, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248328

RESUMEN

Intermittent fasting (IF) plays a critical role in mitigating obesity, yet the precise biological mechanisms require further elucidation. Here Orosomucoid 2 (Orm2) is identified as an IF-induced hepatokine that stimulates adipose browning. IF induced Orm2 expression and secretion from the liver through peroxisome proliferator-activated receptor alpha (PPARα). In adipose tissue, Orm2 bound to glycoprotein 130/interleukin 23 receptor (GP130/IL23R) and promoted adipose browning through the activation of p38 mitogen-activated protein kinases (p38-MAPK). In obese mice, Orm2 led to a significant induction of adipose tissue browning and subsequent weight loss, an effect that is not replicated by a mutant variant of Orm2 deficient in GP130/IL23R binding capability. Crucially, genetic association studies in humans identified an obesity-associated Orm2 variant (D178E), which shows decreased GP130/IL23R binding and impaired browning capacity in mice. Overall, the research identifies Orm2 as a promising therapeutic target for obesity, mediating adipose browning through the GP130/IL23R-p38 signalling pathway.

2.
Small ; : e2404208, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221530

RESUMEN

Even though the power conversion efficiency (PCE) of perovskite solar cells (PSCs) is nearly approaching the Schottky-Queisser limit, low open-circuit voltage (Voc) and severe Voc loss problems continue to impede the improvement of PCEs. Astaxanthin (ASTA) additive is introduced in the formamidinium lead triiodide (FAPbI3) perovskite film as an additive, which can facilitate the transportation of charge carriers and interact with Pb2+ by its distinctive groupings. Furthermore, the addition of ASTA decreases the defect's active energy, regulates the deep-level defect by filling up the grain boundaries (GBs), and promotes the crystallization of perovskite film. Remarkably, an enhanced quasi-Fermi level splitting (QFLS) of 1.164 eV and a reduced Voc loss of only 96 mV are realized. The champion PCE of 24.56% is attained by ASTA-modified PSCs on the basis of 22.75% PCE. Moreover, the PSCs that underwent ASTA modification demonstrate improved operational stability, ensuring consistent output in real-world scenarios. Furthermore, PSCs with an active area of 1 cm2 are used for water electrolysis to produce hydrogen and exhibit a PCE of 22.41%. This work offers an environmentally benign solution to address the inherent issues of FAPbI3 PSCs and lays the groundwork for the development of a prospective solar hydrogen production application.

3.
Adv Mater ; 36(36): e2403257, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39030786

RESUMEN

The buried interface properties of the perovskite solar cells (PSCs) play a crucial role in the power conversion efficiency (PCE) and operational stability. The metal-oxide/perovskite heterogeneous interfaces are highly defective and cause serious ion migration. However, the buried and unexposed bottom interface and simultaneous stabilization of grain boundaries receive less attention and effective solutions. To tackle this problem, a solid-liquid strategy is employed by introducing oily-additive allicin at the buried interface to passivate the shallow (VI and Vo) and deep traps (VPb and PbI). Interestingly, oily status allicin fills the pinholes at the heterointerface and wraps the perovskite grains, suppressing the ion migration during the photoaging process. As a result, an outstanding PCE of 25.07% is achieved with a remarkable fill factor (FF) of 84.03%. The modified devices can maintain 94.51% of the original PCE after light soaking under 1-sun illumination for 1000 h. This work demonstrates a buried interface modification method that employs an eco-friendly additive, which helps promote the development of PSCs with high performance and stability.

4.
J Phys Chem Lett ; 15(28): 7236-7243, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38975969

RESUMEN

Yb3+ doped perovskite nanocrystals (PNCs) serve as efficient photoconverters, exhibiting quantum cutting emission at ∼980 nm, which aligns precisely with the optimal response region of silicon solar cells (SSCs). However, severe nonradiative recombination caused by defects in the crystal lattice and film boundaries, along with limitations in small-scale film preparation, restricts their commercial application. Here, we used Ru3+ to mitigate lattice defects in CsPbCl3 PNCs and adjusted the quantum cutting luminescence, achieving a 175% photoluminescence quantum yield (PLQY). The results show that Ru3+ ions enter the perovskite lattice, fill lead vacancies, and passivate the lattice defects. Furthermore, cysteine effectively eliminates surface defects in PNCs by forming Pb-S bonds, resulting in films with a remarkable 117% PLQY, demonstrating strong photoconversion capabilities. Uniformly knife-coated on 20 × 20 cm2 photovoltaic glass, these films increased SSC efficiency from 21.45% to 23.15%. This study showcases a cost-effective photoconverter and a scalable coating method to boost the photovoltaic efficiency of large-area SSCs.

5.
Cancer Sci ; 115(7): 2269-2285, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38720175

RESUMEN

Dysregulation of long noncoding RNA (lncRNA) expression plays a pivotal role in the initiation and progression of gastric cancer (GC). However, the regulation of lncRNA SNHG15 in GC has not been well studied. Mechanisms for ferroptosis by SNHG15 have not been revealed. Here, we aimed to explore SNHG15-mediated biological functions and underlying molecular mechanisms in GC. The novel SNHG15 was identified by analyzing RNA-sequencing (RNA-seq) data of GC tissues from our cohort and TCGA dataset, and further validated by qRT-PCR in GC cells and tissues. Gain- and loss-of-function assays were performed to examine the role of SNHG15 on GC both in vitro and in vivo. SNHG15 was highly expressed in GC. The enhanced SNHG15 was positively correlated with malignant stage and poor prognosis in GC patients. Gain- and loss-of-function studies showed that SNHG15 was required to affect GC cell growth, migration and invasion both in vitro and in vivo. Mechanistically, the oncogenic transcription factors E2F1 and MYC could bind to the SNHG15 promoter and enhance its expression. Meanwhile, SNHG15 increased E2F1 and MYC mRNA expression by sponging miR-24-3p. Notably, SNHG15 could also enhance the stability of SLC7A11 in the cytoplasm by competitively binding HNRNPA1. In addition, SNHG15 inhibited ferroptosis through an HNRNPA1-dependent regulation of SLC7A11/GPX4 axis. Our results support a novel model in which E2F1- and MYC-activated SNHG15 regulates ferroptosis via an HNRNPA1-dependent modulation of the SLC7A11/GPX4 axis, which serves as the critical effectors in GC progression, and provides a new therapeutic direction in the treatment of GC.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Progresión de la Enfermedad , Ferroptosis , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Nuclear Heterogénea A1 , Fosfolípido Hidroperóxido Glutatión Peroxidasa , ARN Largo no Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Animales , Línea Celular Tumoral , Ratones , Ferroptosis/genética , Masculino , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Femenino , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Proliferación Celular/genética , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Movimiento Celular/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Persona de Mediana Edad , Pronóstico , Ratones Desnudos , Transducción de Señal/genética , Retroalimentación Fisiológica
6.
Biomark Res ; 12(1): 33, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481347

RESUMEN

BACKGROUND: Helicobacter pylori (H pylori) infection is the primary cause of gastric cancer (GC). The role of Disabled-2 (DAB2) in GC remains largely unclear. This study aimed to investigate the role of DAB2 in H pylori-mediated gastric tumorigenesis. METHODS: We screened various datasets of GC to analyze DAB2 expression and cell signaling pathways. DAB2 expression was assessed in human GC tissue microarrays. H pylori infection in vivo and in vitro models were further explored. Immunostaining, immunofluorescence, chromatin immunoprecipitation, co-immunoprecipitation, Western blot, quantitative polymerase chain reaction, and luciferase reporter assays were performed in the current study. RESULTS: The bioinformatic analysis verified that DAB2 was 1 of the 8 genes contributed to tumorigenesis and associated with poor prognosis in GC. The median overall survival and disease-free survival rates in DAB2high group were significantly less than those in DAB2low group. These findings demonstrated that H pylori transcriptionally activated DAB2 expression via signal transducer and activator of transcription 3 (STAT3)-dependent pathway. By bioinformatics analysis and knockdown or overexpression of DAB2, we found that DAB2 upregulated Yes-associated protein 1 (YAP1) transcriptional activity. Mechanistically, DAB2 served as a scaffold protein for integrin beta 3 (ITGB3) and SRC proto-oncogene non-receptor tyrosine kinase (SRC), facilitated the phosphorylation of SRC, promoted the small GTPase ras homolog family member A (RHOA) activation and phosphorylation of YAP1, and ultimately enhanced the YAP1 transcriptional activity. CONCLUSIONS: Altogether, these findings indicated that DAB2 is a key mediator in STAT3-regulated translation of YAP1 and plays crucial roles in H pylori-mediated GC development. DAB2 might serve as a novel therapeutic target for GC.

7.
J Phys Chem Lett ; 15(10): 2665-2674, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38426818

RESUMEN

The quantum cutting ytterbium (Yb3+)-doped CsPbX3 (X = Cl, Cl, or Br) nanocrystals, exhibiting photoluminescence quantum yields (PLQYs) exceeding 100%, hold significant promise for applications in solar energy conversion technologies and near-infrared (NIR) light-emitting diodes (LEDs). This work investigates the usage of chlorophyll (CHL), a naturally existing organic pigment, as an efficient molecular passivator to improve the performance of quantum cutting films. With the assistance of CHL, the resultant perovskite film displays an increased PLQY of 176%. The commercial silicon solar cells (SSCs) with CHL-treated perovskite films demonstrate a remarkable photon-to-current conversion efficiency improvement of 1.83% for a 330.15 cm2 area SSC device. Additionally, a CHL-modified Yb3+:CsPbCl3 film was used to create 988 nm NIR LEDs with an external quantum efficiency of 3.2%. This work provides a new, eco-friendly approach for producing high-quality, large-area Yb3+-doped perovskite film for deployment in photoelectric and night vision applications.

8.
Adv Mater ; 36(18): e2310065, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38290534

RESUMEN

Lanthanide-based lead-free perovskite materials hold great promise for the development of high-resolution full-color displays in the future. Here, various Cs3LnCl6 perovskite nanocrystals (NCs) emitting light across the visible to near-infrared spectrum with remarkably high photoluminescence quantum yield (PLQY) are systemically prepared. Especially, by introducing multifunctional coumarin small molecules into Cs3EuCl6 NCs as an intermediate state, Cs3EuCl6 NCs can achieve an impressive PLQY of 92.4% with pure red emission and an exceptional energy transfer efficiency of nearly 93.2%. Furthermore, the lanthanide-based electroluminescent devices in red, green, and blue are successfully fabricated. Among them, the Cs3EuCl6-NC-based red light-emitting diode (LED) demonstrates a FWHM of 18 nm at 617 nm, an external quantum efficiency up to 5.17%, and a maximum brightness of 2373 cd m-2, which is the most excellent reported for lead-free narrowband (within 20 nm) emission devices. Notably, these devices exhibit an operating half-life of 440 h at a brightness level of 100 cd m-2, surpassing the performance of most reported lead-free perovskite LEDs (PLEDs). This work opens up exciting possibilities for the future commercialization of lanthanide-based PLEDs in the display industry, paving the way for more vibrant, energy-efficient, and long-lasting display technologies.

9.
Nano Lett ; 24(4): 1268-1276, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38241736

RESUMEN

While quasi-two-dimensional (quasi-2D) perovskites have good properties of cascade energy transfer, high exciton binding energy, and high quantum efficiency, which will benefit high-efficiency blue PeLEDs, inefficient domain distribution management and unbalanced carrier transport impede device performance improvement. Herein, (2-(9H-carbazol-9-yl)ethyl)phosphonic acid (2PACz) and methyl 2-aminopyridine-4-carboxylate (MAC) were simultaneously introduced to a blue quasi-2D perovskite film. Relying on the synergistic effect of 2PACz and MAC, it not only modulates the phase distribution inhibiting the n = 2 phase but also greatly improves the electrical property of the quasi-2D perovskite film. As a result, the as-modified blue quasi-2D PeLED demonstrated an external quantum efficiency (EQE) of 17.08% and a luminance of 10142 cd m-2. This study exemplifies the synergistic effect among dual additives and offers a new effective additive strategy modulating phase distribution and building balanced carrier transport, which paves the way for the fabrication of highly efficient blue PeLEDs.

10.
Front Oncol ; 13: 1158863, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404754

RESUMEN

Background: Cancer-associated fibroblasts (CAFs) are essential tumoral components of gastric cancer (GC), contributing to the development, therapeutic resistance and immune-suppressive tumor microenvironment (TME) of GC. This study aimed to explore the factors related to matrix CAFs and establish a CAF model to evaluate the prognosis and therapeutic effect of GC. Methods: Sample information from the multiply public databases were retrieved. Weighted gene co-expression network analysis was used to identify CAF-related genes. EPIC algorithm was used to construct and verify the model. Machine-learning methods characterized CAF risk. Gene set enrichment analysis was employed to elucidate the underlying mechanism of CAF in the development of GC. Results: A three-gene (GLT8D2, SPARC and VCAN) prognostic CAF model was established, and patients were markedly divided according to the riskscore of CAF model. The high-risk CAF clusters had significantly worse prognoses and less significant responses to immunotherapy than the low-risk group. Additionally, the CAF risk score was positively associated with CAF infiltration in GC. Moreover, the expression of the three model biomarkers were significantly associated with the CAF infiltration. GSEA revealed significant enrichment of cell adhesion molecules, extracellular matrix receptors and focal adhesions in patients at a high risk of CAF. Conclusion: The CAF signature refines the classifications of GC with distinct prognosis and clinicopathological indicators. The three-gene model could effectively aid in determining the prognosis, drug resistance and immunotherapy efficacy of GC. Thus, this model has promising clinical significance for guiding precise GC anti-CAF therapy combined with immunotherapy.

11.
Adv Mater ; 35(40): e2302393, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37390486

RESUMEN

Cesium-formamidinium (Cs-FA) perovskites have garnered widespread interest owing to their excellent thermal- and photostability in achieving stable perovskite solar cells (PSCs). However, Cs-FA perovskite typically suffers from Cs+ and FA+ mismatches, affecting the Cs-FA morphology and lattice distortion, resulting in an enlarged bandgap (Eg ). In this work, "upgraded" CsCl, Eu3+ -doped CsCl quantum dots, are developed to solve the key issues in Cs-FA PSCs and also exploit the advantage of Cs-FA PSCs on stability. The introduction of Eu3+ promotes the formation of high-quality Cs-FA films by adjusting the Pb-I cluster. CsCl:Eu3+ also offsets the local strain and lattice contraction induced by Cs+ , which maintains the inherent Eg of FAPbI3 and decreases the trap density. Finally, a power conversion efficiency (PCE) of 24.13% is obtained with an excellent short-circuit current density of 26.10 mA cm-2 . The unencapsulated devices show excellent humidity stability and storage stability, and an initial PCE of 92.2% within 500 h under continuous light illumination, and bias voltage conditions is achieved. This study provides a universal strategy to address the inherent issues of Cs-FA devices and maintain the stability of MA-free PSCs to satisfy future commercial criteria.

12.
Diabetes Metab Syndr Obes ; 16: 1755-1766, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334183

RESUMEN

Objective: To explore the predictors of menstrual recovery in polycystic ovary syndrome (PCOS) women with obesity following laparoscopic sleeve gastrectomy (LSG). Methods: A total of 88 PCOS patients with obesity and 76 control patients with obesity aged 18-45 years were enrolled between May 2013 and December 2020. PCOS was diagnosed using the Rotterdam diagnostic criteria (2003). Anthropometric measurements, biochemical parameters, sex hormones, and circulating fibrinogen-like protein 1 (FGL-1) levels were collected before and six-month after LSG. The data on postoperative menstrual status, body weight, and fertility were obtained through telephone follow-ups for all individuals with PCOS. Results: Patients with PCOS were followed up for at least six months after surgery, and the mean follow-up time was 3.23 years. At 6 months after LSG, circulating total testosterone (TT), calculated free testosterone (cFT), and FGL-1 levels declined significantly. The mean percent excess weight loss (%EWL) and percent total weight loss (%TWL) in PCOS patients at the final follow-up was 97.52% ± 33.90% and 31.65% ± 10.31%, respectively. The proportion of regular menstruation in PCOS patients significantly increased within six months (75.86% vs 0.03% at baseline). In the logistic regression analysis, time from PCOS diagnosis (P=0.007), body mass index (BMI) (P=0.007), TT (P=0.038) at baseline were demonstrated to be independent predictive factors for the regular menstruation in women with PCOS and obesity within 6 months after LSG. Conclusion: In PCOS patients with obesity, time from PCOS diagnosis, BMI, and TT levels at baseline were independently and negatively associated with menstrual recovery within 6 months after LSG, which could be applied in preoperative evaluation.

13.
Adv Mater ; 35(25): e2300118, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36989311

RESUMEN

Erbium ions (Er3+ , 1.54 µm) electric pumped light sources with excellent optical properties and a simple fabrication process are urgently desired to satisfy the development of silicon-based integration photonics. The previous Er-based electroluminescence devices are mainly based on Er-complexes or Er-doped oxide compounds, which usually suffer from low external quantum efficiency(EQE)or high applied voltage etc. In this work, a novel type of Er3+ /Yb3+ co-doped lead-halide perovskite films (Er3+ /Yb3+ :CsPbCl3 ) with the maximum photoluminescence quantum yield of 30.12% are prepared by a simple two-step solution-coating method and the corresponding light emitting diodes (Er-PeLEDs) are fabricated, which demonstrate an almost pure 1.54-µm emission and a peak EQE up to 0.366% at a low applied voltage of 1.4 V. Strong negative thermal quenching effect may help Er-PeLEDs suppress Joule heating quenching. These excellent LED properties benefit mainly from the outstanding regulatory performance of acetate to perovskite films, the excellent semiconductor behavior and strong ionic property of the perovskite, and the involvement of Yb3+ ions, which can directly and efficiently transfer the exciton energy to Er3+ through a quantum cutting process. Overall, the realization of 1.54-µm Er-PeLEDs offers new opportunities for silicon-based integrated light sources.

14.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903695

RESUMEN

All inorganic CsPbBr3 superstructures (SSs) have attracted much research interest due to their unique photophysical properties, such as their large emission red-shifts and super-radiant burst emissions. These properties are of particular interest in displays, lasers and photodetectors. Currently, the best-performing perovskite optoelectronic devices incorporate organic cations (methylammonium (MA), formamidinium (FA)), however, hybrid organic-inorganic perovskite SSs have not yet been investigated. This work is the first to report on the synthesis and photophysical characterization of APbBr3 (A = MA, FA, Cs) perovskite SSs using a facile ligand-assisted reprecipitation method. At higher concentrations, the hybrid organic-inorganic MA/FAPbBr3 nanocrystals self-assemble into SSs and produce red-shifted ultrapure green emissions, meeting the requirement of Rec. 2020 displays. We hope that this work will be seminal in advancing the exploration of perovskite SSs using mixed cation groups to further improve their optoelectronic applications.

16.
Nat Metab ; 5(3): 481-494, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36879120

RESUMEN

Sympathetic neurons activate thermogenic adipocytes through release of catecholamine; however, the regulation of sympathetic innervation by thermogenic adipocytes is unclear. Here, we identify primary zinc ion (Zn) as a thermogenic adipocyte-secreted factor that promotes sympathetic innervation and thermogenesis in brown adipose tissue and subcutaneous white adipose tissue in male mice. Depleting thermogenic adipocytes or antagonizing ß3-adrenergic receptor on adipocytes impairs sympathetic innervation. In obesity, inflammation-induced upregulation of Zn chaperone protein metallothionein-2 decreases Zn secretion from thermogenic adipocytes and leads to decreased energy expenditure. Furthermore, Zn supplementation ameliorates obesity by promoting sympathetic neuron-induced thermogenesis, while sympathetic denervation abrogates this antiobesity effect. Thus, we have identified a positive feedback mechanism for the reciprocal regulation of thermogenic adipocytes and sympathetic neurons. This mechanism is important for adaptive thermogenesis and could serve as a potential target for the treatment of obesity.


Asunto(s)
Adipocitos , Zinc , Masculino , Ratones , Animales , Zinc/metabolismo , Zinc/farmacología , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Termogénesis , Obesidad/metabolismo
18.
J Am Chem Soc ; 145(9): 5342-5352, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36812430

RESUMEN

Zeolites are widely used as catalysts and adsorbents in the chemical industry, but their potential for electronic devices has been stunted to date, as they are commonly recognized as electronic insulators. Here, we have for the first time demonstrated that Na-type ZSM-5 zeolites are ultrawide-direct-band-gap semiconductors based on optical spectroscopy, variable-temperature current-voltage characteristics, and photoelectric effect as well as electronic structure theoretical calculations and further unraveled the band-like charge transport mechanism in electrically conductive zeolites. The increase in charge-compensating Na+ cations in Na-ZSM-5 decreases the band gap and affects its density of states, shifting the Fermi level close to the conduction band. Remarkably, the semiconducting Na-ZSM-5 zeolites have been first applied for constructing electrically transduced sensors that can sense trace-level (77 ppb) ammonia with unprecedentedly high sensitivity, negligible cross-sensitivity, and high stability under moisture ambient conditions compared with conventional semiconducting materials and conductive metal-organic frameworks (MOFs). The charge density difference shows that the massive electron transfer between NH3 molecules and Na+ cations ascribed to Lewis acid sites enables electrically transduced chemical sensing. This work opens a new era of zeolites in applications of sensing, optics, and electronics.

19.
ACS Appl Mater Interfaces ; 15(3): 3961-3973, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36637003

RESUMEN

Defects at the interface of charge transport layers can cause severe charge accumulation and poor charge transferability, which greatly affect the efficiency and stability of stannic oxide (SnO2)-based perovskite solar cells (PSCs). Herein, a new type of MXene (Nb2CTx-MXene) is applied to the interface of SnO2 layers to passivate the interfacial defects and promote charge transport. Nb2CTx-MXene in PSCs realizes the role of boosting the conductivity, reducing the tin vacancies in the interstitial void of the SnO2 layer, decreasing the defect density, and aligning the bandgap. Afterward, Nb2CTx-MXene is decorated with gold nanospheres, which has the ability to modulate the tensile strain of perovskites and suppress the Auger recombination. Eventually, the Au@Nb2CTx-MXene-modified device yields an excellent power conversion efficiency (PCE) of 23.78% with a relatively high open-circuit voltage of 1.215 V (Eg ∼ 1.60 eV). The unencapsulated devices maintain 90% of their initial PCE values after storage in the air with a relative humidity of 40% for 1000 h and remain above 80% of their initial efficiency after operation at the maximum power point for 500 h under 1 sun illumination. Our work provides an avenue to fabricate high-efficiency and stable PSCs with MXene adapting to commercial development.

20.
Mol Oncol ; 17(2): 261-283, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36520032

RESUMEN

Metastasis is one of the main causes of low survival rate of gastric cancer patients. Exploring key proteins in the progression of gastric adenocarcinoma (GAC) may provide new candidates for prognostic biomarker development and therapeutic intervention. We applied quantitative mass spectrometry to compare the proteome and phosphoproteome of primary tumor tissues between GAC patients with and without lymph node metastasis (LNM). We then performed an integrated analysis of the proteomic and transcriptomic data to reveal the molecular features. We quantified a total of 5536 proteins, and we found 218 upregulated and 49 downregulated proteins in tumor samples from patients with LNM compared to those without LNM. Clustering analysis identified a number of hub proteins that have been previously shown to play important roles in gastric cancer progression. We also found that two extracellular proteins, TNXB and SPON1, are overexpressed in patients with LNM, which correlates with poor survival of GAC patients. Overexpression of TNXB and SPON1 was validated by western blotting and immunohistochemistry. Furthermore, treating gastric cancer cells with anti-TNXB antibody significantly reduced cell migration. Finally, quantitative phosphoproteomic analysis combined with activity-based kinase capture revealed a number of activated kinases in primary tumor tissues from patients with LNM, among which GSK3 might be a new target that warrants further study. Our study provides a snapshot of the proteome and phosphoproteome of GAC tumor tissues that have metastatic potential, and identifies potential biomarkers for GAC progression.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Proteoma/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias Gástricas/metabolismo , Proteómica , Glucógeno Sintasa Quinasa 3 , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Metástasis Linfática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...