Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(26): 32066-32073, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37342883

RESUMEN

Two-dimensional (2D) materials provide a great opportunity for fabricating ideal membranes with ultrathin thickness for high-throughput separation. Graphene oxide (GO), owing to its hydrophilicity and functionality, has been extensively studied for membrane applications. However, fabrication of single-layered GO-based membranes utilizing structural defects for molecular permeation is still a great challenge. Optimization of the deposition methodology of GO flakes could offer a potential solution for fabricating desired nominal single-layered (NSL) membranes that can offer a dominant and controllable flow through structural defects of GO. In this study, a sequential coating methodology was adopted for depositing a NSL GO membrane, which is expected to have no or minimum stacking of GO flakes and thus ensure GO's structural defects as the major transport pathway. We have demonstrated effective rejection of different model proteins (bovine serum albumin (BSA), lysozyme, and immunoglobulin G (IgG)) by tuning the structural defect size via oxygen plasma etching. By generating appropriate structural defects, similar-sized proteins (myoglobin and lysozyme; molecular weight ratio (MWR): ∼1.14) were effectively separated with a separation factor of ∼6 and purity of 92%. These findings may provide new opportunities of using GO flakes for fabricating NSL membranes with tunable pores for applications in the biotechnology industry.


Asunto(s)
Grafito , Muramidasa , Membranas , Biotecnología
2.
Small ; 19(24): e2208276, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36922744

RESUMEN

Binary metal nickel-iron alloys have been proven to have great potential in oxygen evolution reaction (OER) electrocatalysis, but there are still certain challenges in how to construct more efficient nickel-iron alloy electrocatalysts and maximize their own advantages. In this work, a heterometallic nickel-iron cluster (L = C64 H66 Fe4 N8 Ni2 O19 ) of Schiff base (LH3  = 2-amino-1,3-propanediol salicylaldehyde) is designed as a precursor to explore its behavior in the pyrolysis process under inert atmosphere. The combination of TG-MS, morphology, and X-ray characterization techniques shows that the Schiff base ligands in the heterometallic clusters produces a strong reductive atmosphere during pyrolysis, which enable the two 3d metals Ni and Fe to form NiFe alloys. Moreover, Fe2 O3 /Fe0.64 Ni0.36 @Cs carbon nanomaterials are formed, in which Fe2 O3 /Fe0.64 Ni0.36 is the potential active material for OER. It is also found that the centrosymmetric structure of the heterometallic Schiff base precursor is potentially related to the formation of the Fe2 O3 /Fe0.64 Ni0.36 alloy@carbon structures. The Fe2 O3 /Fe0.64 Ni0.36 @C-800 provides 274 mV overpotential in 1 m KOH solution at 10 mA cm-2 in OER. This work provides an effective basis for further research on Schiff base bimetallic doping-derived carbon nanomaterials as excellent OER electrocatalysts.

3.
ACS Appl Mater Interfaces ; 12(23): 26360-26366, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32419448

RESUMEN

It is challenging, but constructing hierarchical nanoporous structures with microporous coatings for various important applications, such as entrapment of homogeneous catalysts, size/shape selective catalysis, and so forth, is an urgent need. Moreover, microporous inorganic coatings are particularly desirable because of their excellent stability in organic solvents and at elevated temperatures and pressures. In this study, we design a novel liquid phase interfacial reaction process to form a defect-free, hybrid coating, which can be subsequently converted into microporous coatings, with tunable pore size, on nanoporous materials. As an example to entrap functional materials, tetrakis(triphenylphosphine) palladium (Pd(PPh3)4) was in situ synthesized in the mesoporous channels and encapsulated by the microporous coating shell. The encapsulated Pd(PPh3)4 catalyst exhibited negligible Pd leaching, providing a promising solution for the challenging catalyst separation problem in homogeneous catalysis. These results suggest that this novel strategy might be an effective way of forming microporous inorganic coatings on nanoporous materials for entrapping functional materials for wide applications.

4.
ACS Appl Mater Interfaces ; 12(23): 26095-26100, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32421302

RESUMEN

Trade-off between thickness (and thus gas permeance) and quality (and thus selectivity) of zeolite membranes significantly restricts their wide application. It is challenging to maintain the membrane thickness while minimizing nonselective defects in the selective membrane layer. Currently, continuous change of the synthesis gel concentration during membrane synthesis, instead of high gel concentration for membrane "skeleton" growth and low gel concentration for slow crystal growth to merge "skeleton" crystals, usually leads to thick membranes to compensate for the low selectivity. In this work, we report a gel-modulated synthesis approach to engineer the zeolite membrane synthesis. The gel concentration was suddenly reduced by a quenching process in the middle of the membrane synthesis, leading to reduced nuclei formation and crystal growth rate in the following synthesis process. Membrane quality was significantly improved without increasing membrane thickness, leading to a great increase in membrane selectivity but without sacrifice of gas permeance. Moreover, as an example, highly reproducible SAPO-34 membranes were successfully prepared by the gel-modulated growth method. We expect this novel synthesis strategy might be a viable and economic way of growing thin and high-quality zeolite membranes.

5.
Science ; 367(6478): 667-671, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32029624

RESUMEN

Robust, gas-impeding water-conduction nanochannels that can sieve water from small gas molecules such as hydrogen (H2), particularly at high temperature and pressure, are desirable for boosting many important reactions severely restricted by water (the major by-product) both thermodynamically and kinetically. Identifying and constructing such nanochannels into large-area separation membranes without introducing extra defects is challenging. We found that sodium ion (Na+)-gated water-conduction nanochannels could be created by assembling NaA zeolite crystals into a continuous, defect-free separation membrane through a rationally designed method. Highly efficient in situ water removal through water-conduction nanochannels led to a substantial increase in carbon dioxide (CO2) conversion and methanol yield in CO2 hydrogenation for methanol production.

6.
Annu Rev Chem Biomol Eng ; 9: 17-39, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29570357

RESUMEN

Two-dimensional, graphene-based materials have attracted great attention as a new membrane building block, primarily owing to their potential to make the thinnest possible membranes and thus provide the highest permeance for effective sieving, assuming comparable porosity to conventional membranes and uniform molecular-sized pores. However, a great challenge exists to fabricate large-area, single-layered graphene or graphene oxide (GO) membranes that have negligible undesired transport pathways, such as grain boundaries, tears, and cracks. Therefore, model systems, such as a single flake or nanochannels between graphene or GO flakes, have been studied via both simulations and experiments to explore the transport mechanisms and separation potential of graphene-based membranes. This article critically reviews literature related to single- to few-layered graphene and GO membranes, from material synthesis and characteristics, fundamental membrane structures, and transport mechanisms to potential separation applications. Knowledge gaps between science and engineering in this new field and future opportunities for practical separation applications are also discussed.


Asunto(s)
Filtración/métodos , Gases/aislamiento & purificación , Grafito/química , Membranas Artificiales , Gases/química , Grafito/síntesis química , Nanoporos , Permeabilidad
7.
ACS Appl Mater Interfaces ; 10(1): 769-775, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29239167

RESUMEN

Effective pore mouth size of 5A zeolite was engineered by depositing an ultrathin layer of microporous TiO2 on its external surface and appropriate pore misalignment at the interface. As a result, a slightly bigger N2 molecule (kinetic diameter: 0.364 nm) was effectively excluded, whereas CO2 (kinetic diameter: 0.33 nm) adsorption was only influenced slightly. The prepared composite zeolite sorbents showed an ideal CO2/N2 adsorption selectivity as high as ∼70, a 4-fold increase over uncoated zeolite sorbents, while maintaining a high CO2 adsorption capacity (1.62 mmol/g at 0.5 bar and 25 °C) and a fast CO2 adsorption rate.

8.
Nat Commun ; 8(1): 2107, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29235466

RESUMEN

Among the current CO2 capture technologies, membrane gas separation has many inherent advantages over other conventional techniques. However, fabricating gas separation membranes with both high CO2 permeance and high CO2/N2 selectivity, especially under wet conditions, is a challenge. In this study, sub-20-nm thick, layered graphene oxide (GO)-based hollow fiber membranes with grafted, brush-like CO2-philic agent alternating between GO layers are prepared by a facile coating process for highly efficient CO2/N2 separation under wet conditions. Piperazine, as an effective CO2-philic agent, is introduced as a carrier-brush into the GO nanochannels with chemical bonding. The membrane exhibits excellent separation performance under simulated flue gas conditions with CO2 permeance of 1,020 GPU and CO2/N2 selectivity as high as 680, demonstrating its potential for CO2 capture from flue gas. We expect this GO-based membrane structure combined with the facile coating process to facilitate the development of ultrathin GO-based membranes for CO2 capture.

9.
Nano Lett ; 17(5): 2928-2933, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28388082

RESUMEN

Single-layer graphene oxide (SLGO) is emerging as a new-generation membrane material for high-flux, high-selectivity water purification, owing to its favorable two-dimensional morphology that allows facile fabrication of ultrathin membranes with subnanometer interlayer channels. However, reliable and precise molecular sieving performance still necessarily depends on thick graphene oxide (GO) deposition that usually leads to low water flux. This trade-off between selectivity and flux significantly impedes the development of ultrathin GO membranes. In this work, we demonstrate that the selectivity/flux trade-off can be broken by self-assembly of SLGO via simple deposition rate control. We find GO membranes, prepared by slow deposition of SLGO flakes, exhibit considerably improved salt rejection, while counterintuitively having 2.5-4 times higher water flux than that of membranes prepared by fast deposition. This finding has extensive implications of designing/tuning interlayer nanostructure of ultrathin GO membranes by simply controlling SLGO deposition rate and thus may greatly facilitate their development for high flux, high selectivity water purification.

10.
Bioresour Technol ; 131: 349-56, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23376199

RESUMEN

This study aimed to investigate the feasibility and efficiency of simultaneous acetic acid separation and sugar concentration in model lignocellulosic hydrolyzates by reverse osmosis. The effects of operation parameters such as pH, temperature, pressure and feed concentration on the solute retentions were examined with a synthetic xylose­glucose­acetic acid model solution. Results showed that the monosaccharides were almost completely rejected at above 20 bar, while the acetic acid retention increased with the increase in pH and pressure, and decreased with the temperature increase. The maximum separation factors of acetic acid over xylose and glucose reached as high as 211.5 and 228.4 at pH 2.93 (the initial pH of model lignocellulosic hydrolyzates), 40 °C and 20 bar. Furthermore, the concentration and diafiltration process were employed at optimal operation conditions. Consequently, a high sugar concentration and a beneficially lower acetic acid concentration were simultaneously achieved by reverse osmosis.


Asunto(s)
Ácido Acético/aislamiento & purificación , Mezclas Complejas/aislamiento & purificación , Lignina/química , Monosacáridos/aislamiento & purificación , Concentración de Iones de Hidrógeno , Hidrólisis , Ósmosis , Presión , Temperatura , Ultrafiltración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...