Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38766100

RESUMEN

Dorsal raphe serotonin (5-hydroxytryptamine, 5-HT) neurons are spontaneously active and release 5-HT that is critical to normal brain function such mood and emotion. Serotonin reuptake inhibitors (SSRIs) increase the synaptic and extracellular 5-HT level and are effective in treating depression. Treatment of two weeks or longer is often required for SSRIs to exert clinical benefits. The cellular mechanism underlying this delay was not fully understood. Here we show that the GABAergic inputs inhibit the spike firing of raphe 5-HT neurons; this GABAergic regulation was reduced by 5-HT, which was prevented by G-protein-activated inwardly rectifying potassium (Girk) channel inhibitor tertiapin-Q, indicating a contribution of 5-HT activation of Girk channels in GABAergic presynaptic axon terminals. Equally important, after 14 days of treatment of fluoxetine, a widely used SSRI type antidepressant, this 5-HT inhibition of GABAergic inputs was substantially downregulated. Furthermore, the chronic fluoxetine treatment substantially downregulated the 5-HT activation of the inhibitory Girk current in 5-HT neurons. Taken together, our results suggest that chronic fluoxetine administration, by blocking 5-HT reuptake and hence increasing the extracellular 5-HT level, can downregulate the function of 5-HT1B receptors on the GABAergic afferent axon terminals synapsing onto 5-HT neurons, allowing extrinsic, behaviorally important GABA neurons to more effectively influence 5-HT neurons; simultaneously, chronic fluoxetine treatment also downregulate somatic 5-HT autoreceptor-activated Girk channel-mediated hyperpolarization and decrease in input resistance and intrinsic excitability, rendering 5-HT neurons resistant to autoinhibition and leading to increased 5-HT neuron activity, potentially contributing to the antidepressant effect of SSRIs.

2.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746264

RESUMEN

Despite the profound behavioral effects of the striatal dopamine (DA) activity and the inwardly rectifying potassium channel ( Kir ) being a key determinant of striatal medium spiny neuron (MSN) activity that also profoundly affects behavior, previously reported DA regulations of Kir are conflicting and incompatible with MSN function in behavior. Here we show that in normal mice with an intact striatal DA system, the predominant effect of DA activation of D1Rs in D1-MSNs is to cause a modest depolarization and increase in input resistance by inhibiting Kir, thus moderately increasing the spike outputs from behavior-promoting D1-MSNs. In parkinsonian (DA-depleted) striatum, DA increases D1-MSN intrinsic excitability more strongly than in normal striatum, consequently strongly increasing D1-MSN spike firing that is behavior-promoting; this DA excitation of D1-MSNs is stronger when the DA depletion is more severe. The DA inhibition of Kir is occluded by the Kir blocker barium chloride (BaCl 2 ). In behaving parkinsonian mice, BaCl 2 microinjection into the dorsal striatum stimulates movement but occludes the motor stimulation of D1R agonism. Taken together, our results resolve the long-standing question about what D1R agonism does to D1-MSN excitability in normal and parkinsonian striatum and strongly indicate that D1R inhibition of Kir is a key ion channel mechanism that mediates D1R agonistic behavioral stimulation in normal and parkinsonian animals.

3.
Neurobiol Dis ; 181: 106096, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37001611

RESUMEN

Striatal medium spiny neurons (MSNs) and striatal dopamine (DA) innervation are profoundly important for brain function such as motor control and cognition. A widely accepted theory posits that striatal DA loss causes (or leads to) MSN dendritic atrophy. However, examination of the literature indicates that the data from Parkinson's disease (PD) patients and animal PD models were contradictory among studies and hard to interpret. Here we have re-examined the potential effects of DA activity on MSN morphology or lack thereof. We found that in 15-day, 4- and 12-month old Pitx3 null mutant mice that have severe DA denervation in the dorsal striatum while having substantial residual DA innervation in the ventral striatum, MSN dendrites and spine numbers were similar in dorsal and ventral striatum, and also similar to those in normal mice. In 15-day, 4- and 12-month old tyrosine hydroxylase knockout mice that cannot synthesize L-dopa and thus have no endogenous DA in the entire brain, MSN dendrites and spine numbers were also indistinguishable from age-matched wild-type (WT) mice. Furthermore, in adult WT mice, unilateral 6-OHDA lesion at 12 months of age caused an almost complete striatal DA denervation in the lesioned side, but MSN dendrites and spine numbers were similar in the lesioned and control sides. Taken together, our data indicate that in mice, the development and maintenance of MSN dendrites and spines are DA-independent such that DA depletion does not trigger MSN dendritic atrophy; our data also suggest that the reported MSN dendritic atrophy in PD may be a component of neurodegeneration in PD rather than a consequence of DA denervation.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Ratones , Animales , Dopamina/fisiología , Neuronas/patología , Espinas Dendríticas/patología , Neuronas Espinosas Medianas , Levodopa/farmacología , Enfermedad de Parkinson/patología , Cuerpo Estriado/patología
4.
Mol Psychiatry ; 27(11): 4754-4769, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35948662

RESUMEN

Vascular cognitive impairment and dementia (VCID) is the second most common form of dementia after Alzheimer's disease (AD). Currently, the mechanistic insights into the evolution and progression of VCID remain elusive. White matter change represents an invariant feature. Compelling clinical neuroimaging and pathological evidence suggest a link between white matter changes and neurodegeneration. Our prior study detected hypoperfused lesions in mice with partial deficiency of endothelial nitric oxide (eNOS) at very young age, precisely matching to those hypoperfused areas identified in preclinical AD patients. White matter tracts are particularly susceptible to the vascular damage induced by chronic hypoperfusion. Using immunohistochemistry, we detected severe demyelination in the middle-aged eNOS-deficient mice. The demyelinated areas were confined to cortical and subcortical areas including the corpus callosum and hippocampus. The intensity of demyelination correlated with behavioral deficits of gait and associative recognition memory performances. By Evans blue angiography, we detected blood-brain barrier (BBB) leakage as another early pathological change affecting frontal and parietal cortex in eNOS-deficient mice. Sodium nitrate fortified drinking water provided to young and middle-aged eNOS-deficient mice completely prevented non-perfusion, BBB leakage, and white matter pathology, indicating that impaired endothelium-derived NO signaling may have caused these pathological events. Furthermore, genome-wide transcriptomic analysis revealed altered gene clusters most related to mitochondrial respiratory pathways selectively in the white matter of young eNOS-deficient mice. Using eNOS-deficient mice, we identified BBB breakdown and hypoperfusion as the two earliest pathological events, resulting from insufficient vascular NO signaling. We speculate that the compromised BBB and mild chronic hypoperfusion trigger vascular damage, along with oxidative stress and astrogliosis, accounting for the white matter pathological changes in the eNOS-deficient mouse model. We conclude that eNOS-deficient mice represent an ideal spontaneous evolving model for studying the earliest events leading to white matter changes, which will be instrumental to future therapeutic testing of drug candidates and for targeting novel/specific vascular mechanisms contributing to VCID and AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Demencia Vascular , Sustancia Blanca , Animales , Ratones , Sustancia Blanca/patología , Óxido Nítrico/metabolismo , Circulación Cerebrovascular , Demencia Vascular/patología , Demencia Vascular/psicología , Modelos Animales de Enfermedad , Disfunción Cognitiva/metabolismo , Enfermedad de Alzheimer/metabolismo
5.
Am J Pathol ; 191(11): 1932-1945, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33711310

RESUMEN

Age-related cerebral small-vessel disease (CSVD) is a major cause of stroke and dementia. Despite a widespread acceptance of small-vessel arteriopathy, lacunar infarction, diffuse white matter injury, and cognitive impairment as four cardinal features of CSVD, a unifying pathologic mechanism of CSVD remains elusive. Herein, we introduce partial endothelial nitric oxide synthase (eNOS)-deficient mice as a model of age-dependent, spontaneous CSVD. These mice developed cerebral hypoperfusion and blood-brain barrier leakage at a young age, which progressively worsened with advanced age. Their brains exhibited elevated oxidative stress, astrogliosis, cerebral amyloid angiopathy, microbleeds, microinfarction, and white matter pathology. Partial eNOS-deficient mice developed gait disturbances at middle age, and hippocampus-dependent memory deficits at older ages. These mice also showed enhanced expression of bone morphogenetic protein 4 (BMP4) in brain pericytes before myelin loss and white matter pathology. Because BMP4 signaling not only promotes astrogliogenesis but also blocks oligodendrocyte differentiation, we posit that paracrine actions of BMP4, localized within the neurovascular unit, promote white matter disorganization and neurodegeneration. These observations point to BMP4 signaling pathway in the aging brain vasculature as a potential therapeutic target. Finally, because studies in partial eNOS-deficient mice corroborated recent clinical evidence that blood-brain barrier disruption is a primary cause of white matter pathology, the mechanism of impaired nitric oxide signaling-mediated CSVD warrants further investigation.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Modelos Animales de Enfermedad , Óxido Nítrico Sintasa de Tipo III/deficiencia , Animales , Enfermedades de los Pequeños Vasos Cerebrales/patología , Ratones
6.
Exp Neurol ; 333: 113427, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32735872

RESUMEN

The dopamine (DA) D2-like receptor (D2R) agonist ropinirole is often used for early and middle stage Parkinson's disease (PD). However, this D2-like agonism-based strategy has a complicating problem: D2-like agonism may activate D2 autoreceptors on the residual DA neurons in the PD brain, potentially inhibiting these residual DA neurons and motor function. We have examined this possibility by using systemic and local drug administration in transcription factor Pitx3 null mutant (Pitx3Null) mice that mimic the DA denervation in early and middle stage PD and in DA neuron tyrosine hydroxylase (TH) gene knockout (KO) mice that mimic the severe DA loss in late stage PD. We found that in Pitx3Null mice with residual DA neurons and normal mice with normal DA system, systemically injected ropinirole inhibited locomotion, whereas bilateral dorsal striatal-microinjected ropinirole stimulated movement in Pitx3Null mice; bilateral microinjection of ropinirole into the ventral tegmental area also inhibited movement in Pitx3Null mice; we further determined that ropinirole inhibited nigral DA neuron spike firing in WT mice. In contrast, both systemically and striatum-locally administered ropinirole increased movements in TH KO mice, but produced relatively more dyskinesia than L-dopa. Although requiring confirmation in non-human primates and PD patients, these data suggest that while activating D2-like receptors in striatal projection neurons and hence stimulating movements, D2-like agonists can inhibit residual DA neurons and cause akinesia when the residual DA neurons and motor functions are still substantial, and this motor-inhibitory effect disappears when almost all DA neurons are lost such as in late stage PD.


Asunto(s)
Antiparkinsonianos/farmacología , Neuronas Dopaminérgicas/patología , Indoles/farmacología , Trastornos del Movimiento/tratamiento farmacológico , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Animales , Antiparkinsonianos/administración & dosificación , Proteínas de Homeodominio/genética , Indoles/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microinyecciones , Actividad Motora/efectos de los fármacos , Enfermedad de Parkinson Secundaria/fisiopatología , Receptores de Dopamina D2/efectos de los fármacos , Factores de Transcripción/genética , Tirosina 3-Monooxigenasa/genética , Área Tegmental Ventral
7.
Front Neural Circuits ; 12: 57, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30104963

RESUMEN

Dopamine (DA) profoundly stimulates motor function as demonstrated by the hypokinetic motor symptoms in Parkinson's disease (PD) and by the hyperkinetic motor side effects during dopaminergic treatment of PD. Dopamine (DA) receptor-bypassing, optogenetics- and chemogenetics-induced spike firing of striatal DA D1 receptor (D1R)-expressing, direct pathway medium spiny neurons (dSPNs or dMSNs) promotes movements. However, the endogenous D1R-mediated effects, let alone those of DA replacement, on dSPN spike activity in freely-moving animals is not established. Here we show that using transcription factor Pitx3 null mutant (Pitx3Null) mice as a model for severe and consistent DA denervation in the dorsal striatum in Parkinson's disease, antidromically identified striatonigral neurons (D1R-expressing dSPNs) had a lower baseline spike firing rate than that in DA-intact normal mice, and these neurons increased their spike firing more strongly in Pitx3Null mice than in WT mice in response to injection of L-dopa or the D1R agonist, SKF81297; the increase in spike firing temporally coincided with the motor-stimulating effects of L-dopa and SKF81297. Taken together, these results provide the first evidence from freely moving animals that in parkinsonian striatum, identified behavior-promoting dSPNs become hyperactive upon the administration of L-dopa or a D1 agonist, likely contributing to the profound dopaminergic motor stimulation in parkinsonian animals and PD patients.


Asunto(s)
Conducta Animal/efectos de los fármacos , Agonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Hipercinesia/inducido químicamente , Levodopa/farmacología , Neostriado/efectos de los fármacos , Neuronas/efectos de los fármacos , Enfermedad de Parkinson , Receptores de Dopamina D1/agonistas , Sustancia Negra/efectos de los fármacos , Animales , Desnervación , Modelos Animales de Enfermedad , Proteínas de Homeodominio , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Transcripción
8.
J Neurochem ; 145(6): 436-448, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29500819

RESUMEN

The indirect pathway striatal medium spiny projection neurons (iMSNs) are critical to motor and cognitive brain functions. These neurons express a high level of cAMP-increasing adenosine A2a receptors. However, the potential effects of cAMP production on iMSN spiking activity have not been established, and recording identified iMSNs in freely moving animals is challenging. Here, we show that in the transgenic mice expressing cAMP-producing G protein Gs -coupled designer receptor exclusively activated by designer drug (Gs-DREADD) in iMSNs, the baseline spike firing in MSNs is normal, indicating DREADD expression does not affect the normal physiology of these neurons. Intraperitoneal injection of the DREADD agonist clozapine-N-oxide (CNO; 2.5 mg/kg) increased the spike firing in 50% of the recorded MSNs. However, CNO did not affect MSN firing in Gs-DREADD-negative mice. We also found that CNO injection inhibited the spike firing of globus pallidus external segment (GPe) neurons in Gs-DREADD-positive mice, further indicating CNO excitation of iMSNs. Temporally coincident with these effects on spiking firing in the indirect pathway, CNO injection selectively inhibited locomotion in D2 Gs-DREADD mice. Taken together, our results strongly suggest that cAMP production in iMSNs can increase iMSN spiking activity and cause motor inhibition, thus addressing a long-standing question about the cellular functions of the cAMP-producing adenosine A2a receptors in iMSNs. Cover Image for this issue: doi: 10.1111/jnc.14181.


Asunto(s)
Cuerpo Estriado/metabolismo , AMP Cíclico/biosíntesis , Globo Pálido/fisiología , Vías Nerviosas/metabolismo , Neuronas/fisiología , Núcleo Subtalámico/fisiología , Animales , Conducta Animal/efectos de los fármacos , Clozapina/farmacología , Cuerpo Estriado/citología , Fenómenos Electrofisiológicos/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Proteínas del Tejido Nervioso
9.
Front Aging Neurosci ; 9: 358, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163139

RESUMEN

Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients.

10.
Front Pharmacol ; 8: 935, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311936

RESUMEN

Dopamine (DA) is required for motor function in vertebrate animals including humans. The striatum, a key motor control center, receives a dense DA innervation and express high levels of DA D1 receptors (D1Rs) and D2 receptors (D2Rs). Other brain areas involved in motor function such as the globus pallidus external segment (GPe) and the substantia nigra pars reticulata (SNr) and the motor cortex (MC) also receive DA innervation and express DA receptors. Thus, the relative contribution of the striatal and extrastriatal DA systems to the motor function has been an important question critical for understanding the functional operation of the motor control circuits and also for therapeutic targeting. We have now experimentally addressed this question in the transcription factor Pitx3 null mutant (Pitx3Null) mice that have an autogenic and parkinsonian-like striatal DA denervation and hence supersensitive motor response to DA stimulation. Using DA agonist unilateral microinjection-induced rotation as a reliable readout of motor stimulation, our results show that L-dopa microinjection into the dorsal striatum (DS) induced 5-10 times more rotations than that induced by L-dopa microinjection into GPe and SNr, while L-dopa microinjection into the primary MC induced the least number of rotations. Furthermore, our results show that separate microinjection of the D1R-like agonist SKF81297 and the D2R-like agonist ropinirole into the DS each induced only modest numbers of rotation, whereas concurrent injection of the two agonists triggered more rotations than the sum of the rotations induced by each of these two agonists separately, indicating D1R-D2R synergy. These results suggest that the striatum, not GPe, SNr or MC, is the primary site for D1Rs and D2Rs to synergistically stimulate motor function in L-dopa treatment of Parkinson's disease (PD). Our results also predict that non-selective, broad spectrum DA agonists activating both D1Rs and D2Rs are more efficacious anti-PD drugs than the current D2R agonists.

11.
J Neurophysiol ; 117(3): 987-999, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27927785

RESUMEN

The striatal medium spiny neurons (MSNs) are critical to both motor and cognitive functions. A potential regulator of MSN activity is the GABAergic collateral axonal input from neighboring MSNs. These collateral axon terminals are further under the regulation of presynaptic dopamine (DA) receptors that may become dysfunctional when the intense striatal DA innervation is lost in Parkinson's disease (PD). We show that DA D1 receptor-expressing MSNs (D1-MSNs) and D2 receptor-expressing MSNs (D2-MSNs) each formed high-rate, one-way collateral connections with a homotypic preference in both normal and DA-denervated mouse striatum. Furthermore, whereas the homotypic preference, one-way directionality and the basal inhibitory strength were preserved, DA inhibited GABA release at the D2-MSN→D2-MSN collateral synapse in a supersensitive manner in the DA-denervated striatum. In contrast, for D1-MSN-originated collateral connections, whereas D1 agonism facilitated D1-MSN→D1-MSN collateral inhibition in the normal striatum, this presynaptic D1R facilitation of GABA release was lost in the parkinsonian striatum. These results indicate that in the parkinsonian striatum, dopaminergic treatment can presynaptically weaken the D2-MSN→D2-MSN collateral inhibition and disinhibit the surrounding D2-MSNs, whereas the D1-MSN→D1-MSN collateral inhibition is weakened by the loss of the presynaptic D1 receptor facilitation, disinhibiting the surrounding D1-MSNs. Together, these newly discovered effects can disrupt the MSN circuits in the parkinsonian striatum and may contribute to dopaminergic treatment-induced aberrant motor and nonmotor behaviors in PD.NEW & NOTEWORTHY With the use of a large database, this study establishes that neighboring homotypic striatal spiny projection neurons have a 50% chance to form one-way collateral inhibitory connection, a substantially higher rate than previous estimates. This study also shows that dopamine denervation may alter presynaptic dopamine receptor function such that dopaminergic treatment of Parkinson's disease can weaken the surround inhibition and may reduce the contrast of the striatal outputs, potentially contributing to dopamine's profound motor and nonmotor behavioral effects.


Asunto(s)
Cuerpo Estriado/fisiología , Dopamina/fisiología , Neuronas Dopaminérgicas/fisiología , Inhibición Neural , Neuronas/fisiología , Trastornos Parkinsonianos/fisiopatología , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Dopamina/administración & dosificación , Femenino , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Trastornos Parkinsonianos/patología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Ácido gamma-Aminobutírico/metabolismo
12.
Cell Rep ; 14(8): 1930-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26904943

RESUMEN

Dopamine release during reward-driven behaviors influences synaptic plasticity. However, dopamine innervation and release in the hippocampus and its role during aversive behaviors are controversial. Here, we show that in vivo hippocampal synaptic plasticity in the CA3-CA1 circuit underlies contextual learning during inhibitory avoidance (IA) training. Immunohistochemistry and molecular techniques verified sparse dopaminergic innervation of the hippocampus from the midbrain. The long-term synaptic potentiation (LTP) underlying the learning of IA was assessed with a D1-like dopamine receptor agonist or antagonist in ex vivo hippocampal slices and in vivo in freely moving mice. Inhibition of D1-like dopamine receptors impaired memory of the IA task and prevented the training-induced enhancement of both ex vivo and in vivo LTP induction. The results indicate that dopamine-receptor signaling during an aversive contextual task regulates aversive memory retention and regulates associated synaptic mechanisms in the hippocampus that likely underlie learning.


Asunto(s)
Reacción de Prevención/fisiología , Región CA1 Hipocampal/fisiología , Dopamina/metabolismo , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Memoria a Largo Plazo/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Benzazepinas/farmacología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/fisiología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Electrodos , Potenciación a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Mesencéfalo/citología , Mesencéfalo/efectos de los fármacos , Mesencéfalo/fisiología , Ratones , Ratones Endogámicos C57BL , Microtomía , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Sinapsis/ultraestructura , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
13.
Brain Res ; 1615: 12-21, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25960345

RESUMEN

The transcription factor Pitx3 null mutant (Pitx3Null) mice have a constitutive perinatal-onset and symmetric bilateral dopamine (DA) loss in the striatum. In these mice l-3,4-dihydroxyphenylalanine (l-dopa) induces apparently normal horizontal movements (walking) but also upward movements consisting of the vertical body trunk and waving paws that are absent in normal animals and in animals with the classic unilateral 6-hydroxydopamine (6-OHDA) lesion-induced DA denervation. Thus, a concern is that the perinatal timing of the DA loss and potential developmental abnormalities in Pitx3Null mice may underlie these upward movements, thus reducing the usefulness as a DA denervation model. Here we show that in normal wild-type (Pitx3WT) mice with adult-onset symmetric, bilateral 6-OHDA-induced DA lesion in the dorsal striatum, l-dopa induces normal horizontal movements and upward movements that are qualitatively identical to those in Pitx3Null mice. Furthermore, after unilateral 6-OHDA lesion of the residual DA innervation in the striatum in Pitx3Null mice, l-dopa induces contraversive rotation that is similar to that in Pitx3WT mice with the classic unilateral 6-OHDA lesion. These results indicate that in Pitx3Null mice, the bilateral symmetric DA denervation in the dorsal striatum is sufficient for expressing the l-dopa-induced motor phenotype and the perinatal timing of their DA loss is not a determining factor, providing further evidence that Pitx3Null mice are a convenient and suitable mouse model to study the consequences of DA loss and dopaminergic replacement therapy in Parkinson's disease.


Asunto(s)
Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Levodopa/administración & dosificación , Actividad Motora/efectos de los fármacos , Trastornos Parkinsonianos/fisiopatología , Animales , Cuerpo Estriado/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Noqueados , Oxidopamina , Trastornos Parkinsonianos/patología , Factores de Transcripción/genética
14.
J Neurophysiol ; 113(9): 3397-409, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25787955

RESUMEN

The striatonigral projection is a striatal output pathway critical to motor control, cognition, and emotion regulation. Its axon terminals in the substantia nigra pars reticulata (SNr) express a high level of serotonin (5-HT) type 1B receptors (5-HT(1B)Rs), whereas the SNr also receives an intense 5-HT innervation that expresses 5-HT transporters, providing an anatomic substrate for 5-HT and selective 5-HT reuptake inhibitor (SSRI)-based antidepressant treatment to regulate the striatonigral output. In this article we show that 5-HT, by activating presynaptic 5-HT(1B)Rs on the striatonigral axon terminals, potently inhibited the striatonigral GABA output, as reflected in the reduction of the striatonigral inhibitory postsynaptic currents in SNr GABA neurons. Functionally, 5-HT(1B)R agonism reduced the striatonigral GABA output-induced pause of the spontaneous high-frequency firing in SNr GABA neurons. Equally important, chronic SSRI treatment with fluoxetine enhanced this presynaptic 5-HT(1B)R-mediated pause reduction in SNr GABA neurons. Taken together, these results indicate that activation of the 5-HT(1B)Rs on the striatonigral axon terminals can limit the motor-promoting GABA output. Furthermore, in contrast to the desensitization of 5-HT1 autoreceptors, chronic SSRI-based antidepressant treatment sensitizes this presynaptic 5-HT(1B)R-mediated effect in the SNr, a novel cellular mechanism that alters the striatonigral information transfer, potentially contributing to the behavioral effects of chronic SSRI treatment.


Asunto(s)
Cuerpo Estriado/citología , Fluoxetina/farmacología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sustancia Negra/citología , Animales , Animales Recién Nacidos , Cuerpo Estriado/efectos de los fármacos , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor de Serotonina 5-HT1B/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Serotoninérgicos/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sustancia Negra/efectos de los fármacos , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos
15.
J Neurophysiol ; 113(6): 1697-711, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25552639

RESUMEN

In Parkinson's disease (PD), the dopamine (DA) neuron loss in the substantia nigra and the DA axon loss in the dorsal striatum are severe, but DA neurons in the ventral tegmental area and DA axons in middle and ventral striatal subregions are less affected. Severe DA loss leads to DA receptor supersensitivity, but it was not known whether the supersensitivity of the DA D1 receptors (D1Rs) on the striatonigral axon terminal is determined by the severe striatal or nigral DA loss. This question is important because these two possibilities affect the extent of the striatonigral terminals with supersensitive D1Rs and hence the strength of the direct pathway output. Here we have investigated this question in the transcription factor Pitx3 mutant mice that have a PD-like DA loss pattern. We found that the presynaptic D1R function was upregulated globally: the D1R-mediated facilitation was equally enhanced for the striatonigral GABA output originated in the dorsal striatum where the DA loss is severe and the somatic D1Rs are supersensitive, and for the striatonigral GABA output originated in the middle and ventral striatum where the DA loss is moderate and the somatic D1Rs are not supersensitive. These results suggest that severe nigral DA loss is sufficient to induce functional upregulation of the D1Rs on striatonigral axon terminals. Consequently, in PD, the globally enhanced D1Rs on striatonigral axon terminals originated in broad striatal subregions may strongly enhance the striatonigral GABA output upon D1R stimulation, potentially contributing to D1R agonism's profound motor-stimulating effects.


Asunto(s)
Dopamina/deficiencia , Receptores de Dopamina D1/metabolismo , Sustancia Negra/metabolismo , Sinapsis/metabolismo , Regulación hacia Arriba , Ácido gamma-Aminobutírico/metabolismo , Animales , Dopamina/metabolismo , Proteínas de Homeodominio/genética , Ratones , Receptores de Dopamina D1/genética , Sustancia Negra/fisiología , Sinapsis/fisiología , Factores de Transcripción/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-25237305

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine's ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic) stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors.

17.
Rev Neurosci ; 25(4): 605-19, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24717335

RESUMEN

The subthalamic nucleus (STN) is a key component of the basal ganglia. As the only basal ganglia nucleus comprised of mostly glutamatergic neurons, STN neurons provide a key driving force to their target neurons. Thus, regulation of STN neuron activity is important. One STN regulator is the serotonin (5-HT) system. The STN receives a dense 5-HT innervation. 5-HT1A, 5-HT1B, 5-HT2C, and 5-HT4 receptors are expressed in the STN. 5-HT may regulate the STN via several mechanisms. First, 5-HT may affect STN neuron excitability directly by either inhibiting a subpopulation of STN neurons via activation of 5-HT1A receptors or exciting STN neurons through activation of 5-HT2C and 5-HT4 receptors. Second, 5-HT may affect synaptic inputs to the STN. Via activation of 5-HT1B receptors on the afferent terminals, 5-HT inhibits glutamatergic input to the STN, but the inhibitory effect on GABAergic input is smaller. Third, 5-HT may regulate the STN glutamatergic output by activating presynaptic 5-HT1B receptors, thus reducing burst firing in target neurons. Last, 5-HT may affect glutamate release at the intra-STN axon collaterals and regulate the recurrent excitation. These mechanisms may work in concert to fine-tune the intensity and pattern of STN activity and reduce STN output bursts.


Asunto(s)
Neuronas/metabolismo , Serotonina/metabolismo , Subtálamo/metabolismo , Animales , Humanos , Neuronas/fisiología , Subtálamo/citología , Subtálamo/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología
18.
Neuropharmacology ; 79: 626-33, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24412674

RESUMEN

Cocaine's main pharmacological actions are the inhibition of the dopamine, serotonin, and norepinephrine transporters. Its main behavioral effects are reward and locomotor stimulation, potentially leading to addiction. Using knock-in mice with a cocaine-insensitive dopamine transporter (DAT-CI mice) we have shown previously that inhibition of the dopamine transporter (DAT) is necessary for both of these behaviors. In this study, we sought to determine brain regions in which DAT inhibition by cocaine stimulates locomotor activity and/or produces reward. We used adeno-associated viral vectors to re-introduce the cocaine-sensitive wild-type DAT in specific brain regions of DAT-CI mice, which otherwise only express a cocaine-insensitive DAT globally. Viral-mediated expression of wild-type DAT in the rostrolateral striatum restored cocaine-induced locomotor stimulation and sensitization in DAT-CI mice. In contrast, the expression of wild-type DAT in the dorsal striatum, or in the medial nucleus accumbens, did not restore cocaine-induced locomotor stimulation. These data help to determine cocaine's molecular actions and anatomical loci that cause hyperlocomotion. Interestingly, cocaine did not produce significant reward - as measured by conditioned place-preference - in any of the three cohorts of DAT-CI mice with the virus injections. Therefore, the locus or loci underlying cocaine-induced reward remain underdetermined. It is possible that multiple dopamine-related brain regions are involved in producing the robust rewarding effect of cocaine.


Asunto(s)
Cocaína/farmacología , Condicionamiento Clásico/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Agitación Psicomotora/fisiopatología , Animales , Trastornos Relacionados con Cocaína/fisiopatología , Condicionamiento Clásico/fisiología , Cuerpo Estriado/fisiopatología , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiopatología , Recompensa , Percepción Espacial/efectos de los fármacos , Percepción Espacial/fisiología
19.
J Neurophysiol ; 110(9): 2203-16, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23945778

RESUMEN

The dopamine (DA) D2 receptor (D2R)-expressing medium spiny neurons (D2-MSNs) in the striatum project to and inhibit the GABAergic neurons in the globus pallidus (GP), forming an important link in the indirect pathway of the basal ganglia movement control circuit. These striatopallidal axon terminals express presynaptic D2Rs that inhibit GABA release and thus regulate basal ganglion function. Here we show that in transcription factor Pitx3 gene mutant mice with a severe DA loss in the dorsal striatum mimicking the DA denervation in Parkinson's disease (PD), the striatopallidal GABAergic synaptic transmission displayed a heightened sensitivity to presynaptic D2R-mediated inhibition with the dose-response curve shifted to the left, although the maximal inhibition was not changed. Functionally, low concentrations of DA were able to more efficaciously reduce the striatopallidal inhibition-induced pauses of GP neuron activity in DA-deficient Pitx3 mutant mice than in wild-type mice. These results demonstrate that presynaptic D2R inhibition of the striatopallidal synapse becomes supersensitized after DA loss. These supersensitive D2Rs may compensate for the lost DA in PD and also induce a strong disinhibition of GP neuron activity that may contribute to the motor-stimulating effects of dopaminergic treatments in PD.


Asunto(s)
Dopamina/deficiencia , Neuronas GABAérgicas/fisiología , Globo Pálido/fisiología , Potenciales Postsinápticos Inhibidores , Terminales Presinápticos/fisiología , Receptores de Dopamina D2/metabolismo , Potenciales de Acción , Animales , Dopamina/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Neuronas GABAérgicas/metabolismo , Globo Pálido/citología , Globo Pálido/metabolismo , Proteínas de Homeodominio/genética , Ratones , Ratones Mutantes , Mutación , Terminales Presinápticos/metabolismo , Sustancia Negra/citología , Sustancia Negra/metabolismo , Sustancia Negra/fisiología , Factores de Transcripción/genética
20.
J Neurosci ; 33(11): 4875-85, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23486958

RESUMEN

The GABAergic projection neurons in the substantia nigra pars reticulata (SNr) are key basal ganglia output neurons. The activity of these neurons is critically influenced by the glutamatergic projection from the subthalamic nucleus (STN). The SNr also receives an intense serotonin (5-HT) innervation, raising the possibility that 5-HT may regulate the STN→SNr glutamatergic transmission and the consequent STN-triggered spike firing in SNr neurons. Here we show that 5-HT reduced STN stimulation-evoked long-lasting polysynaptic complex EPSCs in SNr GABA neurons. This inhibitory 5-HT effect was mimicked by the 5-HT1B receptor agonist CP93129 and blocked by the 5-HT1B antagonist NAS-181. 5-HT1A receptor ligands were ineffective. Additionally, 5-HT and CP93129 reduced the frequency but not the amplitude of miniature EPSCs, suggesting a reduced vesicular release. 5-HT and CP93129 also decreased the amplitude but increased the paired pulse ratio of the monosynaptic EPSCs in SNr GABA neurons, indicating a presynaptic 5-HT1B receptor-mediated inhibition of glutamate release. Furthermore, 5-HT and CP93129 inhibited STN-triggered burst firing in SNr GABA neurons, and CP93129's inhibitory effect was strongest when puffed to STN→SNr axon terminals in SNr, indicating a primary role of the 5-HT1B receptors in these axon terminals. Finally, the 5-HT1B receptor antagonist NAS-181 increased the STN-triggered complex EPSCs and burst firing in SNr GABA neurons, demonstrating the effects of endogenous 5-HT. These results suggest that nigral 5-HT, via presynaptic 5-HT1B receptor activation, gates the excitatory STN→SNr projection, reduces burst firing in SNr GABA neurons, and thus may play a critical role in movement control.


Asunto(s)
Neuronas GABAérgicas/citología , Glutamatos/metabolismo , Activación del Canal Iónico/fisiología , Terminales Presinápticos/fisiología , Serotonina/metabolismo , Núcleo Subtalámico/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Potenciales de Acción/efectos de los fármacos , Análisis de Varianza , Animales , Benzopiranos/farmacología , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/fisiología , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratones , Morfolinas/farmacología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Piridinas/farmacología , Pirroles/farmacología , Serotonina/farmacología , Antagonistas de la Serotonina/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Agonistas de Receptores de Serotonina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Sustancia Negra/citología , Tetrodotoxina/farmacología , Valina/análogos & derivados , Valina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA