Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(30): 11937-11945, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092105

RESUMEN

Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process.

2.
Angew Chem Int Ed Engl ; : e202411197, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935406

RESUMEN

The zeolite-catalyzed methanol-to-aromatics (MTA) process is a promising avenue for industrial decarbonization. This process predominantly utilizes 3-dimensional 10-member ring (10-MR) zeolites like ZSM-5 and ZSM-11, chosen for their confinement effect essential for aromatization. Current research mainly focuses on enhancing selectivity and mitigating catalyst deactivation by modulating zeolites' physicochemical properties. Despite the potential, the MTA technology is at a low Technology Readiness Level, hindered by mechanistic complexities in achieving the desired selectivity towards liquid aromatics. To bridge this knowledge gap, this study proposes a roadmap for MTA catalysis by strategically combining controlled catalytic experiments with advanced characterization methods (including operando conditions and "mobility-dependent" solid-state NMR spectroscopy). It identifies the descriptor-role of Koch-carbonylated intermediates, longer-chain hydrocarbons, and the zeolites' intersectional cavities in yielding preferential liquid aromatics selectivity. Understanding these selectivity descriptors and architectural impacts is vital, potentially advancing other zeolite-catalyzed emerging technologies.

3.
Angew Chem Int Ed Engl ; 63(10): e202318250, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38253820

RESUMEN

A methanol-based economy offers an efficient solution to current energy transition challenges, where the zeolite-catalyzed methanol-to-hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM-5, the practical application of this process in a CO2 -neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM-5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch-carbonylation-led) direct and dual cycle mechanisms, which operate during the early and steady-state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid-state NMR spectroscopic-based investigations on the MTH process, involving co-feeding methanol and acetone (cf. a key Koch-carbonylated species), including selective isotope-labeling studies. Our iterative research approach revealed that (Koch-)carbonyl group selectively promotes the side-chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene-toluene-xylene) primarily.

4.
Dalton Trans ; 52(40): 14390-14399, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37781869

RESUMEN

Introducing sustainability into advanced catalytic material design is essential to address growing environmental concerns. Among them, synthesizing inorganic zeolite materials from non-traditional sources (like natural clay) offers several advantages, contributing to sustainability and environmental stewardship. With this objective, we used kaolin to synthesize zeolites with different topologies: SSZ-13 (8-MR with CHA topology), ZSM-5 (10-MR with MFI topology), and Beta (12-MR with BEA topology) (MR: member ring), where a simple and flexible synthetic protocol was adopted without any significant changes. All these zeolites were subjected to catalytic performance evaluation concerning the industrially relevant methanol-to-hydrocarbon (MTH) process. Herein, the kaolin-derived zeolites, especially ZSM-5, led to superior performance and demonstrated enhanced catalyst deactivation-resistant behavior compared to their zeolite counterparts prepared from traditional synthetic routes. Various characterization tools (including under operando conditions) were employed to understand their reactions and deactivation mechanisms. Overall, making zeolites from non-traditional sources presents a pathway for sustainable and environmentally friendly material production, offering benefits such as reduced resource dependence, lower energy consumption, and tailored physicochemical properties beneficial to catalysis. In a broader context, such a research approach contributes to the transition toward a more sustainable and circular economy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...