Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Angew Chem Int Ed Engl ; : e202414271, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294099

RESUMEN

The synthesis of single-crystalline and robust pyrazolate metal-organic frameworks (Pz-MOFs) capable of facilitating challenging organic transformations is fundamentally significant in catalysis. Here we demonstrate a metal-node-based catalytic site anchoring strategy by synthesizing a single-crystalline and robust Pz-MOF (PCN-1004). PCN-1004 features one-dimensional (1D) copper-Pz chains interconnected by well-organized ligands, forming a porous three-dimensional (3D) network with two types of 1D open channels. Notably, PCN-1004 displays exceptional stability in aqueous solutions across a broad pH range (1 to 14), attributed to the robust copper-Pz coordination bonds. Significantly, PCN-1004 functions as an outstanding catalyst in cross dehydrogenative coupling reactions for constructing C-O/C-S bonds, even in the absence of directing groups, achieving yields of up to ~99%, with long cycle lives and high substrate compatibility. PCN-1004 outperforms all previously reported porphyrin-based homogeneous and heterogeneous catalysts. Control experiments and computations elucidate the pivotal catalytic role of the copper-Pz chains and reveal a free radical pathway for the reaction. This work not only demonstrates the successful implementation of a metal-node-based catalytic site anchoring strategy for the efficient catalysis of challenging organic transformations but also highlights the synergistic effect of a robust framework, 1D open channels, and active sites in enhancing catalytic efficiency within MOFs.

3.
ChemSusChem ; : e202401500, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180755

RESUMEN

To mitigate the greenhouse effect, a number of porous organic polymers (POPs) has been developed for carbon capture. Considering the permanent quadrupole of symmetrical CO2 molecules, the integration of electron-rich groups into POPs is a feasible way to enhance the dipole-quadrupole interactions between host and guest. To comprehensively explore the effect of pore environment, including specific surface area, pore size, and number of heteroatoms, on carbon dioxide adsorption capacity, we synthesized a series of microporous POPs with different content of ß-ketoenamine structures via Schiff-base condensation reactions. These materials exhibit high BET specific surface areas, high stability, and excellent CO2 adsorption capacity. It is worth mentioning that the CO2 adsorption capacity and CO2/N2 selectivity of TAPPy-TFP reaches 3.87 mmol g-1 and 27. This work demonstrates that the introduction of ß-ketoenamine sites directly through condensation reaction is an effective strategy to improve the carbon dioxide adsorption performance of carbon dioxide.

4.
Angew Chem Int Ed Engl ; : e202409149, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087465

RESUMEN

A novel resonance-assisted self-doping mechanism has been demonstrated in ladder-type oligoaniline-derived organic conductors. The new class of compounds has a unique structure incorporating acidic phenolic hydroxyl groups into the ladder-type cyclohexadiene-1,4-diimine core, enabling efficient proton transfer and self-doping without the need for external dopants. Mechanistic studies and computational studies confirm the open-shell, zwitterionic nature of the self-doped state and the significant role played by the dielectric environment. This new self-doping mechanism allows for higher stability and durability in the material's electronic performance. The self-doped form retains durability under harsh conditions and maintains its properties over extended periods of time.

5.
Adv Mater ; 36(33): e2407194, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896032

RESUMEN

Perfluorooctanoic acid (PFOA) is a highly recalcitrant organic pollutant, and its bioaccumulation severely endangers human health. While various methods are developed for PFOA removal, the targeted design of adsorbents with high efficiency and reusability remains largely unexplored. Here the rational design and synthesis of two novel zirconium-based metal‒organic frameworks (MOFs) bearing free ortho-hydroxy sites, namely noninterpenetrated PCN-1001 and twofold interpenetrated PCN-1002, are presented. Single crystal analysis of the pure ligand reveals that intramolecular hydrogen bonding plays a pivotal role in directing the formation of MOFs with free hydroxy groups. Furthermore, the transformation from PCN-1001 to PCN-1002 is realized. Compared to PCN-1001, PCN-1002 displays higher chemical stability due to interpenetration, thereby demonstrating an exceptional PFOA adsorption capacity of up to 632 mg g-1 (1.53 mmol g-1), which is comparable to the reported record values. Moreover, PCN-1002 shows rapid kinetics, high selectivity, and long-life cycles in PFOA removal tests. Solid-state nuclear magnetic resonance results and density functional theory calculations reveal that multiple hydrogen bonds between the free ortho-hydroxy sites and PFOA, along with Lewis acid-base interaction, work collaboratively to enhance PFOA adsorption.

6.
Adv Sci (Weinh) ; 11(29): e2309540, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837615

RESUMEN

Ethylene dimerization is an efficient industrial chemical process to produce 1-butene, with demanding selectivity and activity requirements on new catalytic systems. Herein, a series of monodentate phosphinoamine-nickel complexes immobilized on UiO-66 are described for ethylene dimerization. These catalysts display extensive molecular tunability of the ligand similar to organometallic catalysis, while maintaining the high stability attributed to the metal-organic framework (MOF) scaffold. The highly flexible postsynthetic modification method enables this study to prepare MOFs functionalized with five different substituted phosphines and 3 N-containing ligands and identify the optimal catalyst UiO-66-L5-NiCl2 with isopropyl substituted nickel mono-phosphinoamine complex. This catalyst shows a remarkable activity and selectivity with a TOF of 29 000 (molethyl/molNi/h) and 99% selectivity for 1-butene under ethylene pressure of 15 bar. The catalyst is also applicable for continuous production in the packed column micro-reactor with a TON of 72 000 (molethyl/molNi). The mechanistic insight for the ethylene oligomerization has been examined by density functional theory (DFT) calculations. The calculated energy profiles for homogeneous complexes and truncated MOF models reveal varying rate-determining step as ß-hydrogen elimination and migratory insertion, respectively. The activation barrier of UiO-66-L5-NiCl2 is lower than other systems, possibly due to the restriction effect caused by clusters and ligands. A comprehensive analysis of the structural parameters of catalysts shows that the cone angle as steric descriptor and butene desorption energy as thermodynamic descriptor can be applied to estimate the reactivity turnover frequency (TOF) with the optimum for UiO-66-L5-NiCl2. This work represents the systematic optimization of ligand effect through combination of experimental and theoretical data and presents a proof-of-concept for ethylene dimerization catalyst through simple heterogenization of organometallic catalyst on MOF.

7.
J Am Chem Soc ; 146(22): 15446-15452, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38776639

RESUMEN

Linker installation is a potent strategy for integrating specific properties and functionalities into metal-organic frameworks (MOFs). This method enhances the structural diversity of frameworks and enables the precise construction of robust structures, complementing the conventional postsynthetic modification approaches, by fully leveraging open metal sites and active organic linkers at targeting locations. Herein, we demonstrated an insertion of a d-camphorate linker into a flexible Zr-based MOF, PCN-700, through linker installation. The resultant homochiral MOF not only exhibits remarkable stability but also functions as a highly efficient luminescent material for enantioselective sensing. Competitive absorption and energy/electron transfer processes contribute to the sensing performance, while the difference in binding affinities dominates the enantioselectivity. This work presents a straightforward route to crafting stable homochiral MOFs for enantioselective sensing.

8.
J Am Chem Soc ; 146(20): 14174-14181, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38723205

RESUMEN

Construction of robust heterogeneous catalysts with atomic precision is a long-sought pursuit in the catalysis field due to its fundamental significance in taming chemical transformations. Herein, we present the synthesis of a single-crystalline pyrazolate metal-organic framework (MOF) named PCN-300, bearing a lamellar structure with two distinct Cu centers and one-dimensional (1D) open channels when stacked. PCN-300 exhibits exceptional stability in aqueous solutions across a broad pH range from 1 to 14. In contrast, its monomeric counterpart assembled through hydrogen bonding displays limited stability, emphasizing the role of Cu-pyrazolate coordination bonds in framework robustness. Remarkably, the synergy of the 1D open channels, excellent stability, and the active Cu-porphyrin sites endows PCN-300 with outstanding catalytic activity in the cross dehydrogenative coupling reaction to form the C-O bond without the "compulsory" ortho-position directing groups (yields up to 96%), outperforming homogeneous Cu-porphyrin catalysts. Moreover, PCN-300 exhibits superior recyclability and compatibility with various phenol substrates. Control experiments reveal the synergy between the Cu-porphyrin center and framework in PCN-300 and computations unveil the free radical pathway of the reaction. This study highlights the power of robust pyrazolate MOFs in directly activating C-H bonds and catalyzing challenging chemical transformations in an environmentally friendly manner.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38627901

RESUMEN

Further development in the area of medicinal chemistry requires facile and atom-economical C-N bond formation from readily accessible precursors using recyclable and reusable catalysts with low process toxicity. In this work, direct N-alkylation of amines with alcohols is performed with a series of Ir-phosphine-functionalized metal-organic framework (MOF) heterogeneous catalysts. The grafted monophosphine-Ir complexes were studied comprehensively to illustrate the ligand-dependent reactivity. The afforded MOF catalysts exhibited high reactivity and selectivity toward N-alkylamine product formation, especially UiO-66-PPh2-Ir, which showed 90% conversion after recycling with no catalyst residue remaining in the product after the reaction. Furthermore, analyses of the active catalyst, mechanistic studies, control experiments, and H2 adsorption tests are consistent with the conclusion that immobilization of the iridium complex on the MOF support enables the formation of the iridium-monophosphine complex and enhances its stability during the reaction. To illustrate the potential of the catalyst for application in medicinal chemistry, two pharmaceutical precursors were synthesized with up to 99% conversion and selectivity.

11.
J Am Chem Soc ; 146(14): 9811-9818, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38531024

RESUMEN

Perfluorooctanoic acid (PFOA) is an environmental contaminant ubiquitous in water resources, which as a xenobiotic and carcinogenic agent, severely endangers human health. The development of techniques for its efficient removal is therefore highly sought after. Herein, we demonstrate an unprecedented zirconium-based MOF (PCN-999) possessing Zr6 and biformate-bridged (Zr6)2 clusters simultaneously, which exhibits an exceptional PFOA uptake of 1089 mg/g (2.63 mmol/g), representing a ca. 50% increase over the previous record for MOFs. Single-crystal X-ray diffraction studies and computational analysis revealed that the (Zr6)2 clusters offer additional open coordination sites for hosting PFOA. The coordinated PFOAs further enhance the interaction between coordinated and free PFOAs for physical adsorption, boosting the adsorption capacity to an unparalleled high standard. Our findings represent a major step forward in the fundamental understanding of the MOF-based PFOA removal mechanism, paving the way toward the rational design of next-generation adsorbents for per- and polyfluoroalkyl substance (PFAS) removal.

12.
J Am Chem Soc ; 146(2): 1491-1500, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38170908

RESUMEN

3D metal-organic frameworks (MOFs) have gained attention as heterogeneous photocatalysts due to their porosity and unique host-guest interactions. Despite their potential, MOFs face challenges, such as inefficient mass transport and limited light penetration in photoinduced energy transfer processes. Recent advancements in organic photocatalysis have uncovered a variety of photoactive cores, while their heterogenization remains an underexplored area with great potential to build MOFs. This gap is bridged by incorporating photoactive cores into 2D MOF nanosheets, a process that merges the realms of small-molecule photochemistry and MOF chemistry. This approach results in recyclable heterogeneous photocatalysts that exhibit an improved mass transfer efficiency. This research demonstrates a bottom-up synthetic method for embedding photoactive cores into 2D MOF nanosheets, successfully producing variants such as PCN-641-NS, PCN-643-NS, and PCN-644-NS. The synthetic conditions were systematically studied to optimize the crystallinity and morphology of these 2D MOF nanosheets. Enhanced host-guest interactions in these 2D structures were confirmed through various techniques, particularly solid-state NMR studies. Additionally, the efficiency of photoinduced energy transfer in these nanosheets was evidenced through photoborylation reactions and the generation of reactive oxygen species (ROS).

13.
Adv Mater ; 36(12): e2209073, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36693232

RESUMEN

As water scarcity becomes a pending global issue, hygroscopic materials prove a significant solution. Thus, there is a good cause following the structure-performance relationship to review the recent development of hygroscopic materials and provide inspirational insight into creative materials. Herein, traditional hygroscopic materials, crystalline frameworks, polymers, and composite materials are reviewed. The similarity in working conditions of water harvesting and carbon capture makes simultaneously addressing water shortages and reduction of greenhouse effects possible. Concurrent water harvesting and carbon capture is likely to become a future challenge. Therefore, an emphasis is laid on metal-organic frameworks (MOFs) for their excellent performance in water and CO2 adsorption, and representative role of micro- and mesoporous materials. Herein, the water adsorption mechanisms of MOFs are summarized, followed by a review of MOF's water stability, with a highlight on the emerging machine learning (ML) technique to predict MOF water stability and water uptake. Recent advances in the mechanistic elaboration of moisture's effects on CO2 adsorption are reviewed. This review summarizes recent advances in water-harvesting porous materials with special attention on MOFs and expects to direct researchers' attention into the topic of concurrent water harvesting and carbon capture as a future challenge.

14.
Angew Chem Int Ed Engl ; 63(12): e202315075, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38135664

RESUMEN

Phosphine-functionalized metal-organic frameworks (P-MOFs) as an emerging class of coordination polymers, have provided novel opportunities for the development of heterogeneous catalysts. Yet, compared with the ubiquitous phosphine systems in homogeneous catalysis, heterogenization of phosphines in MOFs is still at its early stage. In this Minireview, we summarize the synthetic strategies, characterization and catalytic reactions based on the P-MOFs reported in literature. In particular, various catalytic reactions are discussed in detail in terms of phosphine ligand structure-function relationship, including the potential obstacles for future development. Finally, we discuss the possible solutions, including new types of reactions and techniques as the perspectives for the development of P-MOF catalysts, highlighting the opportunities and challenges.

15.
J Am Chem Soc ; 145(50): 27690-27701, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38069810

RESUMEN

The porous coordination cage PCC-1 represents a new platform potentially useful for the cellular delivery of drugs with poor cell permeability and solubility. PCC-1 is a metal-organic polyhedron constructed from zinc metal ions and organic ligands through coordination bonds. PCC-1 possesses an internal cavity that is suitable for drug encapsulation. To better understand the biocompatibility of PCC-1 with human cells, the cell entry mechanism, disassembly, and toxicity of the nanocage were investigated. PCC-1 localizes in the nuclei and cytoplasm within minutes upon incubation with cells, independent of endocytosis and cargo, suggesting direct plasma membrane translocation of the nanocage carrying its guest in its internal cavity. Furthermore, the rates of cell entry correlate to extracellular concentrations, indicating that PCC-1 is likely diffusing passively through the membrane despite its relatively large size. Once inside cells, PCC-1 disintegrates into zinc metal ions and ligands over a period of several hours, each component being cleared from cells within 1 day. PCC-1 is relatively safe for cells at low micromolar concentrations but becomes inhibitory to cell proliferation and toxic above a concentration or incubation time threshold. However, cells surviving these conditions can return to homeostasis 3-5 days after exposure. Overall, these findings demonstrate that PCC-1 enters live cells by crossing biological membranes spontaneously. This should prove useful to deliver drugs that lack this capacity on their own, provided that the dosage and exposure time are controlled to avoid toxicity.


Asunto(s)
Sistemas de Liberación de Medicamentos , Internalización del Virus , Humanos , Membrana Celular/metabolismo , Metales/metabolismo , Compuestos Orgánicos/metabolismo , Zinc/metabolismo , Iones/metabolismo
16.
Solid State Nucl Magn Reson ; 127: 101898, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37639882

RESUMEN

The proton-phosphorus (H-P) cross-polarization (CP) is effective in Sn(HPO4)2·H2O despite of the presence of paramagnetic ion impurities. Polarization constants TH-P and 1H T1ρ times are measured in static Sn(HPO4)2·H2O by the kinetic variable-temperature H-P CP experiments. The temperature dependence of the 1H T1ρ times is interpreted in terms of proton movements in the interlayer space occurring between the phosphate groups without participation of the water molecules. The process requires an activation energy of 8.7 ± 0.7 kcal/mol. The MAS effect on the 1H T1ρ times is shown and discussed.

17.
J Am Chem Soc ; 145(32): 18029-18035, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37530761

RESUMEN

Ferrocene is perhaps the most popular and well-studied organometallic molecule, but our understanding of its structure and electronic properties has not changed for more than 70 years. In particular, all previous attempts of chemically oxidizing pure ferrocene by binding directly to the iron center have been unsuccessful, and no significant change in structure or magnetism has been reported. Using a metal organic framework host material, we were able to fundamentally change the electronic and magnetic structure of ferrocene to take on a never-before observed physically stretched/bent high-spin Fe(II) state, which readily accepts O2 from air, chemically oxidizing the iron from Fe(II) to Fe(III). We also show that the binding of oxygen is reversible through temperature swing experiments. Our analysis is based on combining Mößbauer spectroscopy, extended X-ray absorption fine structure, in situ infrared, SQUID, thermal gravimetric analysis, and energy dispersive X-ray fluorescence spectroscopy measurements with ab initio modeling.

18.
J Am Chem Soc ; 145(31): 17164-17175, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37440344

RESUMEN

One of the hallmarks of multicomponent metal-organic frameworks (MOFs) is to finely tune their active centers to achieve product selectivity. In particular, obtaining bimetallic MOF hollow structures with precisely tailored redox centers under the same topology is still challenging despite a recent surge of such efforts. Herein, we present an engineering strategy named "cluster labilization" to generate hierarchically porous MOF composites with hollow structures and tunable active centers. By partially replacing zirconium with cerium in the hexanuclear clusters of UiO-66, unevenly distributed yolk-shell structures (YSS) were formed. Through acid treatment or annealing of the YSS precursor, single-shell hollow structures (SSHS) or double-shell hollow structures (DSHS) can be obtained, respectively. The active centers in SSHS and DSHS differ in their species, valence, and spatial locations. More importantly, YSS, SSHS, and DSHS with distinct active centers and microenvironments exhibit tunable catalytic activity, reversed selectivity, and high stability in the tandem reaction and the photoreaction.

19.
Solid State Nucl Magn Reson ; 126: 101875, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301019

RESUMEN

The study of a layered crystalline Sn(IV) phosphate by solid-state NMR has demonstrated that the 31P T1 relaxation of phosphate groups, dependent on spinning rate is completely controlled by the limited spin diffusion to paramagnetic ions found by EPR. The spin-diffusion constant, D(SD), was estimated as 2.04 10-14 cm2s-1. The conclusion was supported by the 31P T1 time measurements in zirconium phosphate 1-1, also showing paramagnetic ions and in diamagnetic compound (NH4)2HPO4.

20.
JACS Au ; 3(5): 1337-1347, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37234108

RESUMEN

A linker design strategy is developed to attain novel polynuclear rare-earth (RE) metal-organic frameworks (MOFs) with unprecedented topologies. We uncover the critical role of ortho-functionalized tricarboxylate ligands in directing the construction of highly connected RE MOFs. The acidity and conformation of the tricarboxylate linkers were altered by substituting with diverse functional groups at the ortho position of the carboxyl groups. For instance, the acidity difference between carboxylate moieties resulted in forming three hexanuclear RE MOFs with novel (3,3,3,10,10)-c wxl, (3,12)-c gmx, and (3,3,3,12)-c joe topologies, respectively. In addition, when a bulky methyl group was introduced, the incompatibility between the net topology and ligand conformation guided the co-appearance of hexanuclear and tetranuclear clusters, generating a novel 3-periodic MOF with a (3,3,8,10)-c kyw net. Interestingly, a fluoro-functionalized linker prompted the formation of two unusual trinuclear clusters and produced a MOF with a fascinating (3,8,10)-c lfg topology, which could be gradually replaced by a more stable tetranuclear MOF with a new (3,12)-c lee topology with extended reaction time. This work enriches the polynuclear clusters library of RE MOFs and unveils new opportunities to construct MOFs with unprecedented structural complexity and vast application potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...