Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 123(32): 6917-6932, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31282162

RESUMEN

Hydration water serves as a microscopic manifestation of structural stability and functions of biomolecules. To develop bio-nanomaterials in applications, it is important to study how the surface topography and heterogeneity of biomolecules result in their diversity of the hydration dynamics and energetics. We here performed molecular dynamics simulations combined with the steered molecular dynamics and umbrella sampling to investigate the dynamics and escape process associated with the free energy change of water molecules close to a globular biomolecule, i.e., hemoglobin (Hb) and G-quadruplex DNA (GDNA). The residence time, power of long-time tail, and dipole relaxation time were found to display drastic changes within the averaged hydration shell of 3.0-5.0 Å. Compared with bulk water, in the inner hydration shell, the water dipole moment displays a slower relaxation process and is more oriented toward GDNA than toward Hb, forming a hedgehog-like structure when it surrounds GDNA. In particular, a spine water structure is observed in the GDNA narrow groove. The water isotope effect not only prolongs the dynamic time scales of libration motion in the inner hydration shell and the dipole relaxation processes in the bulk but also strengthens the DNA spine water structure. The potential of the mean force profile reflects the integrity of the hydration shell structure and enables us to obtain detailed insights into the structures formed by water, such as the caged H-bond network and the edge bridge structures; it also reveals that local hydration shell free energy (LHSFE) depends on H-bond rupture processes and ranges from 0.2 to 4.2 kcal/mol. Our results demonstrate that the surface topography of a biomolecule influences the integrity of the hydration shell structure and LHSFE. Our studies are able to identify various further applications in the areas of microfluid devices and nano-dewetting on bioinspired surfaces.


Asunto(s)
G-Cuádruplex , Hemoglobinas/química , Agua/química , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Conformación Proteica
2.
J Microbiol Immunol Infect ; 51(4): 478-484, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28693928

RESUMEN

BACKGROUND: Der f 7 and Der p 7 are important house dust mite allergens. An IgE-binding inhibition monoclonal antibody WH9 reacts ten folds stronger against Der p 7 than to Der f 7. The purpose of this study is to identify the antigenic determinant(s) and the structural basis of Der f 7 recognize by WH9. METHODS: WH9-reactive determinant(s) on Der f 7 was identified by immunoblot and immunoblot inhibition. The 3-D binary complex structures of WH9 and the group 7 allergens were simulated with homology modeling and docking methods. RESULTS: WH9 reacted with the Der f 7 f9 fragment. Among the five site-directed Der f 7 mutants, WH9 showed reduced immunoblot reactivity against Der f 7 S156A, D159A and P160A mutants. Only the wild-type protein and the Der f 7 I157A and L158A mutants can inhibit significantly the WH9-binding against Der f 7. The structural model of the Der f 7-WH9 complex suggests residues S156 and D159 of Der f 7 can bind to WH9 via potential hydrogen bonds. CONCLUSION: The structure models of Der f 7-WH9 and Der p 7-WH9 complexes revealed that the differential modes of binding of Der p 7 and Der f 7 allergens on WH9 contribute to the differential reactivity of WH9 against the Der f 7 and the Der p 7 mite allergens.


Asunto(s)
Alérgenos/inmunología , Anticuerpos Monoclonales/metabolismo , Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos/inmunología , Pyroglyphidae/inmunología , Alérgenos/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Antígenos Dermatofagoides/metabolismo , Proteínas de Artrópodos/metabolismo , Mapeo Epitopo , Immunoblotting , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica
3.
Phys Chem Chem Phys ; 17(19): 12857-69, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25908641

RESUMEN

G-quadruplexes are attractive drug targets in cancer therapy. Understanding the mechanisms of the binding-unbinding processes involving biomolecules and molecular recognition is essential for designing new drugs of G-quadruplexes. We performed steered molecular dynamics and umbrella sampling simulations to investigate the molecular mechanism and kinetics of ligand unbinding processes of the basket, propeller and hybrid G-quadruplex structures. Our studies of the ligand charge effect showed that Coulomb interaction plays a significant role in stabilizing the G-quadruplex structure in the unbinding process. The free energy profiles were carried out and the free energy changes associated with the unbinding process were computed quantitatively, whereas these results could help to identify accessible binding sites and transient interactions. The dynamics of the hydration shell water molecules around the G-quadruplex exhibits an abnormal Brownian motion, and the thickness and free energy of the hydration shell were estimated. A two-step relaxation scheme was theoretically developed to describe the kinetic reaction of BMVC and G-quadruplex interactions. Our computed results fall in a reasonable range of experimental data. The present investigation could be helpful in the structure-based drug design.


Asunto(s)
G-Cuádruplex , Simulación de Dinámica Molecular , Telómero/química , Telómero/metabolismo , Carbazoles/metabolismo , Humanos , Ligandos , Compuestos de Piridinio/metabolismo , Termodinámica
4.
Biopolymers ; 101(10): 1038-50, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24723333

RESUMEN

The bcl2 promoter region forms a G-quadruplex structure, which is a crucial target for anticancer drug development. In this study, we provide theoretical predictions of the stability of different G-quadruplex folds of the 23-mer bcl2 promoter region and G-quadruplex ligand. We take into account the whole G-quadruplex structure, including bound-cations and solvent effects, in order to compute the ligand binding free energy using molecular dynamics simulation. Two series of the carbazole and diphenylamine derivatives are used to screen for the most potent drug in terms of stabilization. The energy analysis identifies the predominant energy components affecting the stability of the various different G-quadruplex folds. The energy associated with the stability of the G-quadruplex-K(+) structures obtained displays good correlation with experimental Tm measurements. We found that loop orientation has an intrinsic influence on G-quadruplex stability and that the basket structure is the most stable. Furthermore, parallel loops are the most effective drug binding site. Our studies also demonstrate that rigidity and planarity are the key structural elements of a drug that stabilizes the G-quadruplex structure. BMVC-4 is the most potential G-quadruplex ligand. This approach demonstrates significant promise and should benefit drug design.


Asunto(s)
Carbazoles/metabolismo , Difenilamina/metabolismo , G-Cuádruplex , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-bcl-2/genética , Secuencia de Bases , Sitios de Unión , Carbazoles/química , Difenilamina/química , Humanos , Iones , Ligandos , Simulación de Dinámica Molecular , Sondas Moleculares/química , Datos de Secuencia Molecular , Concentración Osmolar , Potasio/farmacología , Estabilidad Proteica/efectos de los fármacos , Electricidad Estática , Termodinámica
5.
PLoS One ; 8(8): e71269, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940735

RESUMEN

Der p 7 is an important house dust mite allergen. However, antigenic determinants of Der p 7 are largely unknown. The purpose of this study is to analyze the determinants of Der p 7 and determine the structural basis of interactions between Der p 7 and WH9, an IgE-binding inhibition mouse monoclonal antibody (MoAb). IgE and WH9-reactive determinant(s) was identified by immunoblot using allergen mutants. A 3-D binary complex structure of Der p 7 and WH9 was simulated with homology modeling and docking methods. Our results obtained showed that among the five Der p 7 mutants (S156A, I157A, L158A, D159A, P160A), serum no. 1045 with IgE-binding against Der p 7 exhibited a reduced IgE immunoblot reactivity against Der p 7 L158A and D159A mutants. WH9 showed reduced immunoblot reactivity against S156A, L158A, D159A and P160A and the observation was confirmed by immunoblot inhibition. The WH9-binding determinant on Der p 7 containing S156, L158, D159 and P160 assumes a loop-like structure. The structural model of the Der p 7-WH9 complex suggests residues S156, I157, L158, D159 and P160 of Der p 7 contribute to WH9 binding via potential hydrogen bonds, electrostatic and hydrophobic interactions. In conclusion, MoAb WH9 interacts with critical residues L158 and D159 of Der p 7 and inhibits IgE-binding to Der p 7. Results obtained advance our understanding on molecular and structural bases of the antigenicity of Der p 7, its interactions with MoAb WH9 and facilitate the design of safer immunotherapy of human atopic disorders.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos/inmunología , Biología Computacional , Mapeo Epitopo/métodos , Mapas de Interacción de Proteínas , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Antígenos Dermatofagoides/química , Antígenos Dermatofagoides/genética , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Células Cultivadas , Humanos , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Mapas de Interacción de Proteínas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...