RESUMEN
The remarkable potential of two-dimensional (2D) materials in sustaining Moore's law has sparked a research frenzy. Extensive efforts have been made in the research of utilizing 2D semiconductors as channel materials in field-effect transistors. However, the next generation of integrated devices requires the integration of gate dielectrics with wider bandgaps and higher dielectric constants. Here, insulating α-Sb2O3 single-crystal nanosheets are synthesized by one-step chemical vapor deposition method. Importantly, the α-Sb2O3 single-crystal dielectric exhibits a high dielectric constant of 11.8 and a wide bandgap of 3.78 eV. Besides, the atomically smooth interface between α-Sb2O3 and MoS2 enables the fabrication of dual-gated field-effect transistors with the top gate dielectric of α-Sb2O3 nanosheets. The field-effect transistors exhibit a switching ratio of exceeding 108, which achieves the manipulation of field-effect transistors by using 2D dielectric materials. These results hold significant implications for optimizing the performances of 2D devices and innovating microelectronics.
RESUMEN
Two-dimensional (2D) semiconductors have attracted considerable attention for their potential in extending Moore's law and advancing next-generation electronic devices. Notably, the discovery and development of 2D ferromagnetic semiconductors (FMSs) open exciting opportunities in manipulating both charge and spin, enabling the exploration of exotic properties and the design of innovative spintronic devices. In this review, we aim to offer a comprehensive summary of emerging 2D FMSs, covering their atomic structures, physical properties, preparation methods, growth mechanisms, magnetism modulation techniques, and potential applications. We begin with a brief introduction of the atomic structures and magnetic properties of novel 2D FMSs. Next, we delve into the latest advancements in the exotic physical properties of 2D FMSs. Following that, we summarize the growth methods, associated growth mechanisms, magnetism modulation techniques and spintronic applications of 2D FMSs. Finally, we offer insights into the challenges and potential applications of 2D FMSs, which may inspire further research in developing high-density, non-volatile storage devices based on 2D FMSs.
RESUMEN
A series of windmill-shape heterocyclic molecules containing three NâBâN units, TBN and its derivatives, with quasi-planar C3 symmetric backbone, are synthesized. The parent TBN exhibits a strongly allowed, doubly degenerate lowest excited state but suffers from very low fluorescence, due to very fast nonradiative decay rate through a conical intersection (CI) as revealed by femtosecond transient absorption spectroscopy and quantum-chemical calculations. Introducing peripheral phenyl- or thienyl-groups (Ph-TBN or Th-TBN) induces pronounced bathochromic shifts and enhances fluorescence, which is beneficial from inhibited nonradiative pathway by the increased energy barriers to access the CI at excited state. The understanding of this rather uncommon behaviour may open routes for the design of novel fluorescence materials.
RESUMEN
This study presents a series of triphenylmethyl monoradicals incorporating varying numbers of peripheral perylene bisimide (PBI) substituents (1PBI-TTMâ , 2PBI-TTMâ and 3PBI-TTMâ ). The incorporation of electron-withdrawing PBI substituents significantly enhances the stability of these carbon radicals, enabling them to display exceptional electrochemical redox reversibility. Notably, the electronic interplay between the PBI substituents and the central triphenylmethyl core facilitates unique and reversible multi-step redox reactions. Among the reported radicals, the tris-PBI-functionalized radical (3PBI-TTMâ ) demonstrates the remarkable ability to accommodate up to seven electrons under negative potentials, forming high valence anions. This research promotes the development of highly stable carbon radicals with superior electrochemical oxidation-reduction processes, presenting promising avenues for the advancement of electric energy storage technologies.
RESUMEN
Aminoacyl-tRNA synthetases are fundamental to the translation machinery with emerging roles in transcriptional regulation. Previous cellular studies have demonstrated tyrosyl-tRNA synthetase (YARS1 or TyrRS) as a stress response protein through its cytosol-nucleus translocation to maintain cellular homeostasis. Here, we established a mouse model with a disrupted TyrRS nuclear localization signal, revealing its systemic impact on metabolism. Nuclear TyrRS deficiency (YarsΔNLS) led to reduced lean mass, reflecting a mild developmental defect, and reduced fat mass, possibly due to increased energy expenditure. Consistently, YarsΔNLS mice exhibit improved insulin sensitivity and reduced insulin levels, yet maintain normoglycemia, indicative of enhanced insulin action. Notably, YarsΔNLS mice also develop progressive hearing loss. These findings underscore the crucial function of nuclear TyrRS in the maintenance of fat storage and hearing and suggest that aminoacyl-tRNA synthetases' regulatory roles can affect metabolic pathways and tissue-specific health. This work broadens our understanding of how protein synthesis interconnects metabolic regulation to ensure energy efficiency.
Asunto(s)
Pérdida Auditiva , Tirosina-ARNt Ligasa , Animales , Ratones , Tirosina-ARNt Ligasa/metabolismo , Tirosina-ARNt Ligasa/genética , Pérdida Auditiva/metabolismo , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Núcleo Celular/metabolismo , Metabolismo Energético , Resistencia a la Insulina , MasculinoRESUMEN
Polycyclic heteroaromatics (PHAs) are a highly versatile class of functional materials, especially applicable as efficient luminophores in organic light-emitting diodes (OLEDs). Those constructed by tethered phenyl surrounding the main group center attract extensive attention due to their excellent OLED device performance. However, the development of such a class of emitters is often limited to boron, nitrogen-doped π-conjugated heterocycles. Herein, we proposed a novel kind of blue emitter by constructing a donor-acceptor molecular configuration, utilizing a dual sulfone-bridged triphenylamine (BTPO) core and mono/di-diphenylamine (DPA) substituents. The twisted D-A molecular structures and appropriate donor strength facilitate the effective separation of natural transition orbitals, endowing the emitters with charge-transfer dominant hybridized local and charge-transfer characteristics for the excited states. Both BTPO-DPA and BTPO-2DPA own small S1-T1 splitting energy, thus demonstrating blue thermally activated delayed fluorescence. The more symmetrical structure and enhanced CT features brought by additional DPA moiety confer BTPO-2DPA with a shorter delayed fluorescence lifetime, a higher fluorescence quantum yield and narrower emission. Therefore, BTPO-2DPA based OLED devices exhibit superior blue electroluminescence performance, with external quantum efficiencies reaching 12.31 %.
RESUMEN
The concept of creating room-temperature ferromagnets from organic radicals proposed nearly sixty years ago, has recently experienced a resurgence due to advances in organic radical chemistry and materials. However, the lack of definitive design paradigms for achieving stable long-range ferromagnetic coupling between organic radicals presents an uncertain future for this research. Here, an innovative strategy is presented to achieve room-temperature ferromagnets by assembling π-conjugated radicals into π-π stacking aggregates. These aggregates, with ultra-close π-π distances and optimal π-π overlap, provide a platform for strong ferromagnetic (FM) interaction. The planar aromatic naphthalene diimide (NDI) anion radicals form nanorod aggregates with a π-π distance of just 3.26 Å, shorter than typical van der Waals distances. The suppressed electron paramagnetic resonance (EPR) signal and emergent near-infrared (NIR) absorption of the aggregates confirm strong interactions between the radicals. Magnetic measurements of NDI anion radical aggregates demonstrate room-temperature ferromagnetism with a saturated magnetization of 1.1 emu g-1, the highest among pure organic ferromagnets. Theoretical calculations reveal that π-stacks of NDI anion radicals with specific interlayer translational slippage favor ferromagnetic coupling over antiferromagnetic coupling.
RESUMEN
High performance deep-blue emitters with a Commission International de l'Eclairage (CIE) coordinate of CIEy≤0.08 are highly desired in ultrahigh-definition displays. Herein, we designed and synthesized an efficient D-π-A deep-blue emitter, 2-(6-([1,1' : 3',1''-terphenyl]-5'-yl)pyridin-3-yl)-1-phenyl-1H-phenanthro[9,10-d] imidazole (mPTPH), using the synergistic effect of intramolecular hydrogen bond (H-bond) and hybridized excited state. Single-crystal structure analysis confirmed that there exist intra- and intermolecular H-bond interactions which could inhibit the structure vibration and increase photoluminescence efficiency. The photophysical and theoretical results show that mPTPH exhibited hybridized local and charge-transfer (HLCT) feature with strong deep-blue emission. Ultimately, the non-doped device based on mPTPH exhibited high maximum luminance of 20610â cd m-2. The doped device achieved high maximum external quantum efficiency of 5.4 % and small efficiency roll-off with deep-blue emission peak of 413â nm and CIE coordinate of (0.16, 0.08).
RESUMEN
Fe-based 2D materials exhibit rich chemical compositions and structures, which may imply many unique physical properties and promising applications. However, achieving controllable preparation of ultrathin non-layered FeS crystal on SiO2/Si substrate remains a challenge. Herein, the influence of temperature and molecular sieves is reported on the synthesis of ultrathin FeS nanosheets with a thickness as low as 2.3 nm by molecular sieves-assisted chemical vapor deposition (CVD). The grown FeS nanosheets exhibit a non-layered hexagonal NiAs structure and belong to the P63/mmc space group. The inverted symmetry broken structure is confirmed by the angle-resolved second harmonic generation (SHG) test. In particular, the 2D FeS nanosheets exhibit exceptional metallic behavior, with conductivity up to 1.63 × 106 S m-1 at 300 K for an 8 nm thick sample, which is higher than that of reported 2D metallic materials. This work provides a significant contribution to the synthesis and characterization of 2D non-layered Fe-based materials.
RESUMEN
Sliding ferroelectricity in 2D materials, arising from interlayer sliding-induced interlayer hybridization and charge redistribution at the van der Waals interface, offers a means to manipulate spontaneous polarization at the atomic scale through various methods such as stacking order, interfacial contact, and electric field. However, the practical application of extending 2D sliding ferroelectricity remains challenging due to the contentious mechanisms and the complex device structures required for ferroelectric switching. Here, a sliding memristor based on a graphene/parallel-stacked hexagonal boron nitride/graphene tunneling device, featuring a stable memristive hysteresis induced by interfacial polarizations and barrier height modulations, is presented. As the tunneling current density increases, the memristive window broadens, achieving an on/off ratio of ≈103 and 2 order decrease of the trigger current density, attributed to the interlayer migration of positively charged boron ions and the formation of conductive filaments, as supported by the theoretical calculations. The findings open a path for exploring the sliding memristor via a tunneling device and bridge the gap between sliding ferroelectricity and memory applications.
RESUMEN
The development of new near-infrared-responsive photocatalysts is a fascinating and challenging approach to acquire high photocatalytic hydrogen evolution (PHE) performance. Herein, near-infrared-responsive black CuVP2S6 and CuCrP2S6 flakes, as well as CuInP2S6 flakes, are designed and constructed for PHE. Atom-resolved scanning transmission electron microscopy images and X-ray absorption fine structure evidence the formation of ultrathin single-crystalline sheet-like structure of CuVP2S6 and CuCrP2S6. The synthetic CuVP2S6 and CuCrP2S6, with a narrow bandgap of ≈1.0 eV, shows the high light-absorption edge exceeding 1100 nm. Moreover, through the femtosecond-resolved transient absorption spectroscopy, CuCrP2S6 displays the efficient charge transfer and long charge lifetime (18318.1 ps), which is nearly 3 and 29 times longer than that of CuVP2S6 and CuInP2S6, respectively. In addition, CuCrP2S6, with the appropriate d-band and p-band, is thermodynamically favorable for the H+ adsorption and H2 desorption by contrast with CuVP2S6 and CuInP2S6. As a result, CuCrP2S6 exhibits high PHE rates of 9.12 and 0.66 mmol h-1 g-1 under simulated sunlight and near-infrared light irradiation, respectively, far exceeding other layered metal phospho-sulfides. This work offers a distinctive perspective for the development of new near-infrared-responsive photocatalysts.
RESUMEN
Localized magnetic moments in non-magnetic materials, by interacting with the itinerary electrons, can profoundly change the metallic properties, developing various correlated phenomena such as the Kondo effect, heavy fermion, and unconventional superconductivity. In most Kondo systems, the localized moments are introduced through magnetic impurities. However, the intrinsic magnetic properties of materials can also be modulated by the dimensionality. Here, we report the observation of Kondo effect in a heterodimensional superlattice VS2-VS, in which arrays of the one-dimensional (1D) VS chains are encapsulated by two-dimensional VS2 layers. In such a heterodimensional Kondo superlattice, we observe the typical Kondo effect but with intriguing anisotropic field dependence. This unique anisotropy is determined to originate from the magnetic anisotropy which has the root in the unique 1D chains in the structure, as corroborated by the first-principles calculation. Our results open up a novel avenue of studying exotic correlated physics in heterodimensional materials.
RESUMEN
It is crucial to prepare high-mobility organic polycrystalline film through solution processing. However, the delocalized carrier transport of polycrystalline films in organic semiconductors has rarely been investigated through Hall-effect measurement. This study presents a strategy for building strong intermolecular interactions to fabricate solution-crystallized p-type perylene diimide (PDI) dianion films with a closer intermolecular π-π stacking distance of 3.25 Å. The highly delocalized carriers enable a competitive Hall mobility of 3 cm2 V-1 s-1, comparable to that of the reported high-mobility organic single crystals. The PDI dianion films exhibit a high electrical conductivity of 17 S cm-1 and typical band-like transport, as evidenced by the negative temperature linear coefficient of mobility proportional to T-3/2. This work demonstrates that, as the intermolecular π-π interactions become strong enough, they will display high mobility and conductivity, providing a new approach to developing high-mobility organic semiconductor materials.
RESUMEN
Ultrathin 2D ferroelectrics with high Curie temperature are critical for multifunctional ferroelectric devices. However, the ferroelectric spontaneous polarization is consistently broken by the strong thermal fluctuations at high temperature, resulting in the rare discovery of high-temperature ferroelectricity in 2D materials. Here, a chemical vapor deposition method is reported to synthesize 2D CuCrSe2 nanosheets. The crystal structure is confirmed by scanning transmission electron microscopy characterization. The measured ferroelectric phase transition temperature of ultrathin CuCrSe2 is about ≈800 K. Significantly, the switchable ferroelectric polarization is observed in ≈5.2 nm nanosheet. Moreover, the in-plane and out-of-plane ferroelectric response are modulated by different maximum bias voltage. This work provides a new insight into the construction of 2D ferroelectrics with high Curie temperature.
RESUMEN
Zeolitic imidazolate framework-67 (ZIF-67) has been widely used as a precursor to developing efficient PtCo alloy catalysts for hydrogen evolution reaction (HER). However, traditional in-situ pyrolysis strategies involve complicated interface structure modulating processes between ZIF-67 and Pt precursors, challenging large-scale synthesis. Herein, a "pyrolysis etching-confined pyrolysis" approach is developed to design confined PtCo alloy in porous frameworks of onion carbon derived from ZIF-67. The confined PtCo alloy with Pt content of only 5.39 wt% exhibits a distinct HER activity in both acid (η10: 5 mV and Tafel: 9 mV dec-1) and basic (η10: 33 mV and Tafel: 51 mV dec-1) media and a drastic enhancement in stability. Density functional theory calculations reveal that the strong electronic interaction between Pt and Co allows favorable electron redistribution, which affords a favorable hydrogen spillover on PtCo alloy compared with that of pristine Pt(111). Operational electrochemical impedance spectroscopy demonstrates that the Faraday reaction process is facilitated under acidic conditions, while the transfer of intermediates through the electric double-layer region under alkaline conditions is accelerated. This work not only offers a universal route for high-performance Pt-based alloy catalysts with metal-organic framework (MOF) precursors but also provides experimental evidence for the role of the electric double layer in electrocatalysis reactions.
RESUMEN
Excellent stability is an essential premise for organic diradicals to be used in organic electronic and spintronic devices. We have attached two tris(2,4,6-trichlorophenyl)methyl (TTM) radical building blocks to the two sides of perylene bisimide (PBI) bridges and obtained two regioisomeric diradicals (1,6-TTM-PBI and 1,7-TTM-PBI). Both of the isomers show super stability rather than the monomeric TTM under ambient conditions, due to the increased conjugation and the electron-withdrawing effects of the PBI bridges. The diradicals show distinct and reversible multistep redox processes, and a spectro-electrochemistry investigation revealed the generation of organic mixed-valence (MV) species during reduction processes. The two diradicals have singlet ground states, very small singlet-triplet energy gaps (ΔES-T ) and a pure open-shell character (with diradical character y0 =0.966 for 1,6-TTM-PBI and 0.967 for 1,7-TTM-PBI). This work opens a window to developing very stable diradicals and offers the opportunity of their further application in optical, electronic and magnetic devices.
RESUMEN
The 2D ternary transition metal phosphorous chalcogenides (TMPCs) have attracted extensive research interest due to their widely tunable band gap, rich electronic properties, inherent magnetic and ferroelectric properties. However, the synthesis of TMPCs via chemical vapor deposition (CVD) is still challenging since it is difficult to control reactions among multi-precursors. Here, a subtractive element growth mechanism is proposed to controllably synthesize the TMPCs. Based on the growth mechanism, the TMPCs including FePS3 , FePSe3 , MnPS3 , MnPSe3 , CdPS3 , CdPSe3 , In2 P3 S9 , and SnPS3 are achieved successfully and further confirmed by Raman, second-harmonic generation (SHG), and scanning transmission electron microscopy (STEM). The typical TMPCs-SnPS3 shows a strong SHG signal at 1064 nm, with an effective nonlinear susceptibility χ(2) of 8.41 × 10-11 m V-1 , which is about 8 times of that in MoS2 . And the photodetector based on CdPSe3 exhibits superior detection performances with responsivity of 582 mA W-1 , high detectivity of 3.19 × 1011 Jones, and fast rise time of 611 µs, which is better than most previously reported TMPCs-based photodetectors. These results demonstrate the high quality of TMPCs and promote the exploration of the optical properties of 2D TMPCs for their applications in optoelectronics.
RESUMEN
Chromophores with hybridized local and charge-transfer (HLCT) excited state are promising for the realization of high performance blue organic light-emitting diodes (OLEDs). The rational manipulation of HLCT excited state for efficient emitters remains challenging. Herein, we present three donor-π-acceptor (D-π-A) molecules (mPAN, mPANPH, and mPNAPH) with phenanthro[9,10-d]imidazole (PI) and pyridinyl as donor and π-bridge respectively. Changes in various kinds of polycyclic aromatic derivative acceptors (anthracene, 9-phenylanthracene, and 1-phenylnaphthalene) could manipulate the excited states and optoelectronic properties. Theoretical calculations reveal that the S1 state of mPNAPH exhibits HLCT nature while the other two molecules show local excited (LE) state dominated feature. The photophysical properties also demonstrate this characteristic. Therefore, compared with mPAN and mPANPH, mPNAPH has higher photoluminescence quantum yield (PLQY) whether in solutions or neat films. Ultimately, the non-doped devices based on these emitters show high luminance larger than 35000â cd m-2 , and high maximum external quantum efficiencies (EQEmax s) larger than 5 % with low efficiency roll-off. In particular, the mPNAPH-based device displays an excellent performance of pure blue emission at 456â nm with Commission Internationale de L'Eclairage coordinate of (0.15, 0.16) and EQEmax of 6.13 % that benefited from the HLCT state and high-lying reverse intersystem crossing process.
RESUMEN
Floating gate memory (FGM), composed of van der Waals (vdW) junctions with an atomically thin floating layer for charge storage, is widely employed to develop logic-in memories and in-sensor computing devices. Most research efforts of FGM are spent on achieving long-term charge storage and fast reading/writing for flash and random-access memory. However, dynamic modulation of memory time via a tunneling barrier and vdW interfaces, which is critical for synaptic computing and machine vision, is still lacking. Here, a van der Waals short-term memory with tunable memory windows and retention times from milliseconds to thousands of seconds is reported, which is approximately exponentially proportional to the thickness h-BN (hexagonal boron nitride) barrier. The specific h-BN barrier with fruitful gap states provides charge release channels for trapped charges, making the vdW device switchable between positive photoconductance and negative photoconductance with a broadband light from IR to UV range. The dynamic short-term memory with tunable photo response highlights the design strategy of novel vdW memory vis interface engineering for further intelligent information storage and optoelectronic detection.
RESUMEN
Two-dimensional (2D) transition metal chalcogenides (TMCs) hold great promise as novel microwave absorption materials owing to their interlayer interactions and unique magnetoelectric properties. However, overcoming the impedance mismatch at the low loading is still a challenge for TMCs due to the restricted loss pathways caused by their high-density characteristic. Here, an interface engineering based on the heterostructure of 2D Cr5Te8 and graphite is in situ constructed via a one-step chemical vapor deposit to modulate impedance matching and introduce multiple attenuation mechanisms. Intriguingly, the Cr5Te8@EG (ECT) heterostructure exhibits a minimum reflection loss of up to - 57.6 dB at 15.4 GHz with a thin thickness of only 1.4 mm under a low filling rate of 10%. The density functional theory calculations confirm that the splendid performance of ECT heterostructure primarily derives from charge redistribution at the abundant intimate interfaces, thereby reinforcing interfacial polarization loss. Furthermore, the ECT coating displays a remarkable radar cross section reduction of 31.9 dB m2, demonstrating a great radar microwave scattering ability. This work sheds light on the interfacial coupled stimulus response mechanism of TMC-based heterogeneous structures and provides a feasible strategy to manipulate high-quality TMCs for excellent microwave absorbers.