Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Oral Maxillofac Implants ; 0(0): 1-23, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38717348

RESUMEN

PURPOSE: This experimental study investigated how well implant stability quotient (ISQ) represents resonance frequency. Benchtop experiments on standardized samples, mimicking a premolar section of a mandible, were conducted to correlate an ISQ value and a resonance frequency to synthetic bone density and an incremental insertion torque. A frequency spectrum analysis was performed to check the validity of the resonance frequency analysis (RFA). MATERIALS AND METHODS: Branemark Mk III implants with dimensions ∅4 Å~ 11.5 mm were placed in Sawbones test models of five different densities (40, 30, 40/20, 20, 15 PCF). An incremental insertion torque was recorded during implant placement. To perform stability measurements, the test models were clamped partially in a vise (unclamped volume 10 Å~ 20 Å~ 34 mm). A MultiPeg was attached onto the implants, and a Penguin RFA measured ISQ. Simultaneously, motion of the MultiPeg was monitored via a laser Doppler vibrometer and processed by a spectrum analyzer to obtain the resonance frequency. Tightness of the clamp was adjusted to vary the resonance frequency. A statistical analysis produced a linear correlation coefficient 𝑅 among the measured ISQ, resonance frequency, and incremental insertion torque. RESULTS: The resonance frequency had high correlation to the incremental insertion torque (𝑅 = 0.978), confirming the validity of using RFA for this study. Measured ISQ data were scattered and had low correlation to the resonance frequency (𝑅 = 0.214) as well as the incremental insertion torque (𝑅 = -0.386). The spectrum analysis revealed simultaneous presence of multiple resonance frequencies. CONCLUSIONS: For the designed benchtop tests, resonance frequency does indicate implant stability in view of Sawbones density and incremental insertion torque. ISQ measurements, however, do not correlate well to the resonance frequency, and may not reflect the stability when multiple resonance frequencies are present simultaneously.

2.
Eur J Gastroenterol Hepatol ; 36(6): 712-719, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526917

RESUMEN

BACKGROUND: The vonoprazan (VPZ)-amoxicillin (AMO) dual therapy (VA) demonstrates a satisfactory eradication rate for Helicobacter pylori (H. pylori ). However, the optimal dosage of AMO in this regimen remains uncertain. The objective of this study is to investigate the efficacy of different doses of AMO in the VA regimen for first-line treatment of H. pylori infection. METHODS: A total of 192 treatment-naive H. pylori -infected patients were randomly assigned to one of three groups: low-dose VA (LD-VA: VPZ 20 mg b.i.d + AMO 750 mg t.i.d), moderate-dose VA (MD-VA:VPZ 20 mg b.i.d + AMO 1000 mg t.i.d), and high-dose VA (HD-VA: VPZ 20 mg b.i.d + AMO 1250 mg t.i.d). All groups received 14 days of treatment. The study evaluated and compared the eradication rates, adverse events (AEs), and patient compliance among the three groups. RESULTS: Eradication rates for LD-VA, MD-VA, and HD-VA were 76.6% (49/64), 79.7% (51/64), and 84.4% (54/64), respectively, as determined by intention-to-treat analysis; 90.6% (48/53), 94.3% (50/53), and 98.1% (53/54) according to per-protocol analysis; 89.1% (49/55), 94.4% (51/54), and 96.4% (54/56) with modified intention-to-treat analysis (all P  > 0.05). Although not statistically significant, numerically higher eradication rates were observed with the higher dose AMO VA regimen. There were no statistically significant differences in the incidence of AEs and compliance among the three VA regimens. CONCLUSION: Fourteen-day VA regimens with AMO doses exceeding 2 g/day demonstrated satisfactory eradication rates. HD-VA therapy is potentially the most effective regimen. Large-sample clinical trials are required to further validate these findings.


Asunto(s)
Amoxicilina , Antibacterianos , Quimioterapia Combinada , Infecciones por Helicobacter , Helicobacter pylori , Inhibidores de la Bomba de Protones , Pirroles , Sulfonamidas , Humanos , Infecciones por Helicobacter/tratamiento farmacológico , Sulfonamidas/administración & dosificación , Amoxicilina/administración & dosificación , Masculino , Femenino , Persona de Mediana Edad , Helicobacter pylori/efectos de los fármacos , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Estudios Prospectivos , Pirroles/administración & dosificación , Pirroles/efectos adversos , Adulto , China , Resultado del Tratamiento , Inhibidores de la Bomba de Protones/administración & dosificación , Inhibidores de la Bomba de Protones/efectos adversos , Anciano
3.
Ecotoxicol Environ Saf ; 271: 115957, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219617

RESUMEN

The perennial ryegrass Lolium perenne can be used in conjunction with cadmium (Cd)-tolerant bacteria such as Cdq4-2 (Enterococcus spp.) for bioremediation of Cd-contaminated soil. In this study, a theoretical basis was provided to increase the efficiency of L. perenne remediation of Cd-contaminated soil using microorganisms to maintain the stability of the soil microbiome. The experimental design involved three treatment groups: CK (soil without Cd addition) as the control, 20 mg·kg-1 Cd-contaminated soil, and 20 mg·kg-1 Cd-contaminated soil + Cdq4-2, all planted with L. perenne. The soil was collected on day 60 to determine the soil microbial activity and bacterial community structure and to analyze the correlation between soil variables, the bacterial community, available Cd content in the soil, Cd accumulation, and L. perenne growth. The soil microbial activity and bacterial community diversity decreased under Cd stress, and the soil microbial community composition was changed; while inoculation with Cdq4-2 significantly increased soil basal respiration and the activities of urease, invertase, and fluorescein diacetate (FDA) hydrolase by 83.65%, 79.72%, 19.88%, and 96.15% respectively; and the stability of the community structure was also enhanced. The Actinobacteriota biomass, the amount of available Cd, and the above- and belowground Cd content of L. perenne were significantly negatively correlated with the total phosphorus, total potassium, and pH. The activity of urease, invertase, and FDA hydrolase were significantly positively correlated with the biomasses of Acidobacteriota and L. perenne and significantly negatively correlated with the Chloroflexi biomass. Further, the available soil Cd content and the above- and belowground Cd levels of L. perenne were significantly positively correlated with the Actinobacteriota biomass and significantly negatively correlated with the Gemmatimonadetes biomass. Overall, inoculating Cd-tolerant bacteria improved the microbial activity, diversity, and abundance, and changed the microbial community composition, facilitating the remediation of Cd-contaminated soil by L. perenne.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Biodegradación Ambiental , Ureasa , beta-Fructofuranosidasa , Bacterias , Suelo/química , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
4.
Bioresour Technol ; 395: 130323, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228221

RESUMEN

Bioremediation is one of the effective ways for heavy metal remediation. Iron-modified biochar (F@BC) loaded with Bacillus pseudomycoides (BF@BC) was synthesized to remove the coexistence of cadmium (Cd) and arsenic (As) in solutions. The results showed that B. pseudomycoides significantly increased the removal rate of Cd(II) by enhancing the specific surface area and Si-containing functional groups of biochar (BC). The surface of F@BC was enriched with Fe-containing functional groups, significantly improving As(III) adsorption. The combination of ferrihydrite and strains on BF@BC enhanced the removal of Cd(II) and As(III). It also promoted the oxidation of As(III) by producing an abundance of hydroxyl radicals (·OH). The maximum saturated adsorption capacity of BF@BC for Cd(II) and As(III) increased by 52.47% and 2.99 folds compared with BC, respectively. This study suggests that biochar loaded with Fe and bacteria could be sustainable for the remediation of the coexistence of Cd(II) and As(III) in solutions.


Asunto(s)
Arsénico , Bacillus , Compuestos Férricos , Contaminantes Químicos del Agua , Cadmio , Contaminantes Químicos del Agua/análisis , Carbón Orgánico , Adsorción
5.
Sci Total Environ ; 912: 168828, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38029975

RESUMEN

Sedum plumbizincicola is a promising hyperaccumulator for heavy metal phytoremediation. It grows in heavy metal polluted soil and stores specific endophyte resources with heavy metal tolerance or growth promotion characteristics. In this study, the endophyte communities of S. plumbizincicola, growing naturally in the field (two former mining locations and one natural location) were investigated, and their structure and function were comparatively studied. The bioaccumulation and translocation characteristics of cadmium (Cd) and selenium (Se) in S. plumbizincicola were also evaluated. The results showed that the heavy metal pollution reduced the richness and diversity of endophyte communities. Soil pH and Cd concentration could be the key factors affecting the composition of the endophyte community. Co-occurrence network analysis identified that 22 keystone taxa belonging to Actinobacteriota, Firmicutes, Myxococcota and Proteobacteria were positively correlated with Cd bioaccumulation and translocation. The predicted endophyte metabolic pathways were enriched in physiological metabolism, immune system, and genetic Information processing. These findings may help to understand how endophytes assist host plants to enhance their adaptability to harsh environments, and provide a basis for further exploration of plant-endophyte interactions and improvement in phytoremediation efficiency.


Asunto(s)
Metales Pesados , Sedum , Contaminantes del Suelo , Cadmio/análisis , Suelo , Sedum/metabolismo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Biodegradación Ambiental , Bacterias/metabolismo , Concentración de Iones de Hidrógeno
6.
Ecotoxicol Environ Saf ; 263: 115281, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37499387

RESUMEN

As a gas signal molecule, hydrogen sulfide (H2S) can participate in many physiological and biochemical processes such as seed germination and photosynthesis regulation. In order to explore the regulatory effect of H2S on the growth of Miscanthus sacchariflorus under Cd stress and to provide sufficient theoretical basis for the complex action of H2S and energy plants to remediate soil pollution. In this experiment, the effects of different concentrations of H2S (10, 25, 50, 100, 300, 400, 500 µmol·L-1 (µM)) pretreatment on the growth index, lipid peroxidation degree, chlorophyll (Chl) content, osmoregulation substance content, antioxidant enzyme activity and non-enzymatic antioxidant content of M. sacchariflorus under Cd stress (50 µM) were studied. The results showed that under Cd stress, the reactive oxygen species (ROS) content in the body of M. sacchariflorus was unbalanced, and the growth were severely inhibited, the activities of antioxidant enzymes, such as catalase (CAT) and superoxide dismutase (SOD) significantly decreased, and the content of osmoregulation substance, ascorbic acid (AsA) and glutathione (GSH) significantly increased. With the increase of H2S concentration, its effect on resisting Cd stress can be shown as "low concentration promotes, high concentration inhibits". When the concentration of H2S ≤ 300 µM, although there was no significant difference in Cd content compared with Cd treatment alone, it can regulate the activities of peroxidase (POD), SOD, glutathione reductase (GR) and monodehydroascorbate reductase (MDHAR), increase the content of osmoregulation substances, oxidized glutathione (GSSG), and the transformation rate of AsA and dehydroascorbic acid (DHA) to reduce the oxidative damage and improve the growth and photosynthetic indicators of plants; when the concentration of H2S ≥ 400 µM, Cd content in the ground and root decreased significantly, but the transport factor increased significantly, the growth status of M. sacchariflorus were more severely inhibited by the combined stress of H2S and Cd. In this experiment, it was found that the concentration of H2S pretreatment ≤ 300 µM could regulate the growth of M. sacchariflorus under Cd stress to normal level, and when the treatment concentration was 50 µM, the effect was the best. It will provide a new idea for the treatment of contaminated soil by energy plants.


Asunto(s)
Antioxidantes , Sulfuro de Hidrógeno , Antioxidantes/metabolismo , Cadmio/toxicidad , Plantones , Sulfuro de Hidrógeno/farmacología , Ácido Ascórbico/farmacología , Glutatión/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Poaceae/metabolismo , Peróxido de Hidrógeno/farmacología
7.
J Hazard Mater ; 448: 130965, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36860049

RESUMEN

The effects of biochar addition on the physiological and biochemical characteristics of Vetiveria zizanioides, and the enrichment of heavy metals, were studied herein. The aim was to provide a theoretical reference for biochar to regulate the growth of V. zizanioides in the heavy metal-contaminated soil of mining areas and the enrichment capacity of Cu, Cd, and Pb. The results showed that the addition of biochar significantly increased the contents of various pigments in the middle and late growth stages of V. zizanioides, reduced the contents of malondialdehyde (MDA) and proline (Pro) in each growth period, weakened the peroxidase (POD) activity during the entire growth period; superoxide dismutase (SOD) activity decreased in the initial stages and substantially increased in the middle and late stages. The addition of biochar reduced the enrichment of Cu in the roots and leaves of V. zizanioides, while the enrichment of Cd and Pb increased. In conclusion, it was found that biochar could reduce the toxicity of heavy metals in contaminated soil in the mining area, affect the growth of V. zizanioides and its accumulation of Cd and Pb, and is, therefore, beneficial to the restoration of contaminated soil and the overall ecological restoration of the mining area.


Asunto(s)
Chrysopogon , Metales Pesados , Cadmio , Plomo , Suelo
8.
Heliyon ; 9(2): e12604, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36814625

RESUMEN

Due to its soil formation process, dryland red soil has certain characteristics that are unfavorable for crop growth, including acidity, fineness, plate structures, and erosivity. The use of large amounts of fertilizer can decrease fertility and biodiversity and increase acidification, thereby seriously restricting the sustainable utilization of dryland red soil resources. Therefore, there is an urgent need for techniques that improve the crop quality and yield in dryland red soil areas. Returning crop waste to fields as fertilizer is a promising approach to sustainable agriculture. In the present study, the effects of applying peanut shell and an associated biochar product to dryland red soil were investigated, with a focus on soil microbial activity and community structure. Field experiments were conducted in Jiangxi Province, southern China, in 2020, in field plots of sweet potato crops. Seven treatments were set up according to the principle of equal carbon return to farmland: Control: (conventional fertilization); S1, S2, S3 (peanut shell application of 3000, 4500 and 6000 kg hm-2, respectively); and BC1, BC2, BC3 (peanut shell biochar application of 1000, 1500 and 2000 kg hm-2, respectively). The application of peanut shell and its biochar improved soil basal respiration, with the greatest increase relative to controls of 161.06% found in treatment S3 at the root harvest stage. The most obvious increase in microbial biomass carbon content due to biochar application was 206.50% in treatment BC2 at the root harvest stage. The application of peanut shell and its biochar increased the phospholipid fatty acid (PLFA) contents of total soil microorganisms and different microbial groups. The maximum increases in the PLFA contents of total soil microorganisms, gram-positive bacteria, and gram-negative bacteria occurred at the early root formation stage in treatment BC2, which were 112.16%, 102.52%, and 115.64%, respectively. Both peanut shell and biochar increased the PLFA contents of soil actinomycetes, arbuscular mycorrhizal fungi (AMF), and other fungi to certain extents. The soil actinomycetes PLFAs increased by 120.08% at the early root formation stage in BC2, while the AMF PLFAs increased by 79.44% at the seedling stage in S2. This study provides theoretical and practical guidance for the comprehensive utilization of peanut shell and the implementation of circular agriculture in dryland red soil regions. It also provides a scientific basis for improving the fertility of dryland red soil.

9.
Sci Total Environ ; 873: 162314, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805060

RESUMEN

Cadmium (Cd) contamination is a serious threat to food security and human health. The cost-effective in situ method of remediating Cd-contaminated soil uses Cd-tolerant microorganisms and Cd-enriching plants. The present study investigated the dynamic effects of inoculating soil with a Cd-tolerant bacteria strain Cdq4-2 (Enterococcus sp.) on the physiological and biochemical properties of perennial ryegrass Lolium perenne. The combined effects of remediating Cd-contaminated soil with this plant and these bacteria were also studied. An experiment was used to compare three treatments of L. perenne crops: 1) CK (control soil without Cd), 2) C (20 mg/kg Cd-contaminated soil), and 3) CB (20 mg/kg Cd-contaminated soil inoculated with bacteria Cdq4-2). The results show that compared with treatment C, the aboveground biomass, underground biomass, and total biomass of CB were 46.83-69.31%, 131.76-462.79%, and 62.65-101.53% greater, respectively. The superoxide dismutase activity of CB was 17.62-54.63% lower, while its peroxidase activity was 67.49-146.51% higher. The malondialdehyde concentration in CB was 30.40-40.24% more significant, the ascorbic acid concentration was 6.20-188.22% higher, and its glutathione concentration was 16.25-63.63% lower. The Cd concentrations of aboveground parts of a plant in treatment CB were 18.55% and 30.53% higher than those of C at days 20 and 40, respectively, while that of underground parts was 24.25% higher on day 40. The bioconcentration factors of aboveground and underground parts were higher in treatment CB on day 40. The inoculation of Cd-contaminated soils with bacteria Cdq4-2 promoted growth in L. perenne, improved its antioxidant ability, and promoted the absorption, translocation, and accumulation of Cd. Hence, it improved the effectiveness of L. perenne in remediating Cd-contaminated soils.


Asunto(s)
Lolium , Contaminantes del Suelo , Humanos , Cadmio/análisis , Suelo/química , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Antioxidantes/farmacología , Bacterias
10.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555551

RESUMEN

Plants are affected by changes in light and adaptation mechanisms can affect secondary metabolite synthesis. In this study, the physiological response and regulation of the coumarin biosynthetic pathway of Angelica dahurica to different light intensities (natural light (CK), shade rate 50% (L1), shade rate 70% (L2), and shade rate 90% (L3)) were examined. The chlorophyll content, level of the enzymes of the antioxidant system, extent of lipid peroxidation, and concentrations of the osmoregulatory solute levels were determined in potted plants. Root transcriptome under different light intensities was sequenced using high-throughput technology, and differentially expressed genes (DEGs) related to coumarin biosynthesis were analyzed by quantitative real-time PCR (qRT-PCR). With increasing shade, Chl a, Chl b, Chl a + b, and Chl a/b content increased, while the Chl a/b ratio decreased. The antioxidant enzyme system activity and extent of membrane lipid peroxidation increased. The soluble protein (SP) and proline (Pro) content decreased with the reduction in the light intensity, and soluble sugar (SS) content was found to be highest at 50% shade. The RNA-seq analysis showed that 9388 genes were differentially expressed in the L3 group (7561 were upregulated and 1827 were downregulated). In both the L1 and L2 groups, DEGs were significantly enriched in "Ribosome biosynthesis"; meanwhile, in the L3 group, the DEGs were significantly enriched in "Amino and ribonucleotide sugar metabolism" in KEGG metabolic pathway analysis. Additionally, 4CL (TRINITY_DN40230_c0_g2) and COMT (TRINITY_DN21272_c0_g1) of the phenylpropanoid metabolic pathway were significantly downregulated in the L3 group. In conclusion, A. dahurica grew best under 50% shade and the secondary-metabolite coumarin biosynthetic pathway was inhibited by 90% shade, affecting the yield and quality of medicinal compounds.


Asunto(s)
Angelica , Vías Biosintéticas , Vías Biosintéticas/genética , Antioxidantes , Cumarinas , Azúcares
11.
World J Gastrointest Oncol ; 14(7): 1348-1355, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36051099

RESUMEN

BACKGROUND: Perivascular epithelioid cell tumor (PEComa) represents a group of rare mesenchymal tumors. PEComa can occur in many organs but is rare in the colorectum, especially in children. Furthermore, PEComa is a rare cause of intussusception, the telescoping of a segment of the gastrointestinal tract into an adjacent one. We describe a rare case of pediatric PEComa complicated with intussusception and anal incarceration, and conduct a review of the current literature. CASE SUMMARY: A 12-year-old girl presented with abdominal pain and abdominal ultrasound suggested intussusception. Endoscopic direct-vision intussusception treatment and colonoscopy was performed. A spherical tumor was discovered in the transverse colon and removed by surgery. Postoperative pathologic analyses revealed that the tumor volume was 5.0 cm × 4.5 cm × 3.0 cm and the tumor tissue was located in the submucosa of the colon, arranged in an alveolar pattern. The cell morphology was regular, no neoplastic necrosis was observed, and nuclear fission was rare. The immunohistochemical staining results were as follows: Human melanoma black 45 (HMB 45) (+), cluster of differentiation 31 (CD31) (+), cytokeratin (-), melanoma-associated antigen recognized by T cells (-), smooth muscle actin (-), molleya (-), desmin (-), S-100 (-), CD117 (-), and Ki67 (positive rate in hot spot < 5%). Combined with the results of pathology and immunohistochemistry, we diagnosed the tumor as PEComa. Postoperative recovery was good at the 4 mo follow-up. CONCLUSION: The diagnosis of PEComa mainly depends on pathology and immunohistochemistry. Radical resection is the preferred treatment method.

12.
Environ Sci Pollut Res Int ; 29(58): 87874-87883, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35821315

RESUMEN

With developments in industry, petroleum and heavy metal pollution are increasingly affecting soil, significantly harming the environment, biosecurity, and human health. Therefore, the remediation of contaminated soil is becoming increasingly important. In this study, ryegrass (Lolium perenne L.) was planted in petroleum-heavy metal co-contaminated soil with the application of nitrogen and phosphorus fertilizers. Three treatments were set up: uncontaminated soil + ryegrass (SH); petroleum-heavy metal co-contaminated soil + ryegrass (SPGH); and petroleum-heavy metal co-contaminated soil + ryegrass + nitrogen and phosphorus fertilizer (SPGH + NP). The results showed that the petroleum-heavy metal co-contamination promoted increases in the root length, surface area, volume, and diameter of ryegrass roots, increasing the below-ground biomass and decreasing the photosynthetic pigment content in the early stages of the experiment. The ratios of chlorophyll a/b and chlorophyll/carotenoid also increased. However, the application of fertilizer reduced the length, surface area, volume, and diameter of ryegrass roots in the co-contaminated soil, and the below-ground biomass decreased while the above-ground biomass increased. Furthermore, the photosynthetic pigment content was significantly higher than that in the unfertilized treatment and the chlorophyll a/b ratio decreased while the chlorophyll/carotenoid ratio increased. Therefore, fertilizers could alleviate the toxic effects of petroleum-heavy metal combined pollution on ryegrass roots and promote the synthesis of chlorophyll and other pigments, thus reducing the inhibitory effect of petroleum-heavy metal combined pollution on ryegrass growth and facilitating the remediation of the polluted soil.


Asunto(s)
Lolium , Metales Pesados , Petróleo , Contaminantes del Suelo , Humanos , Fertilizantes , Clorofila A , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Metales Pesados/análisis , Suelo , Fósforo , Nitrógeno , Carotenoides
13.
Ecotoxicol Environ Saf ; 237: 113559, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483151

RESUMEN

Bacterivorous nematodes are abundant in petroleum-contaminated soils. However, the ecological functions of bacterivorous nematodes and their impacts together with the addition of organic materials on the activity and diversity of microorganisms in petroleum-contaminated soils remain unknown. To assess such effects, six treatments were established in this study, including uncontaminated nematodes-free soil (Control), petroleum-contaminated soil (PC), petroleum-contaminated soil + 5 nematodes per gram dry soil (PCN), and petroleum-contaminated soil + 5 nematodes per gram dry soil + 1% wheat straw (PCNW), or + 1% rapeseed cake (PCNR), or + 1% biochar (PCNB). Results showed that the enzyme activities in the six treatments generally increased firstly and then decreased during the incubation period. Compared with Control, the invertase activity in PCNW, PCNR, and PCNB increased by 80.6%, 313.5%, and 12.4%, respectively, whereas the urease activity in PC, PCN, PCNW, PCNR, and PCNW increased by 1.2%, 25.5%, 124.3%, 105.3%, and 25.5%, respectively. Petroleum pollution, inoculation of bacterivorous nematodes, and the addition of organic materials all significantly boosted the concentrations of phospholipid fatty acids (PLFAs) of soil bacteria, actinobacteria, and total microorganisms, and increased the concentrations of both G+ and G- bacteria PLFAs and the ratio of G-/G+. The concentration of fungi PLFAs and the ratio of fungi to bacteria were significantly higher in PCNW and PCNR than those in other treatments. Overall, adding bacterivorous nematodes and organic materials to the petroleum-contaminated soil significantly improved soil microbial activity and community structure, suggesting that bacterivorous nematodes could be used for the bioremediation in petroleum contaminated soils.


Asunto(s)
Nematodos , Petróleo , Contaminantes del Suelo , Animales , Bacterias , Biodegradación Ambiental , Petróleo/toxicidad , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis
14.
Environ Sci Pollut Res Int ; 29(35): 52483-52492, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35258728

RESUMEN

Cadmium (Cd) pollution has led to a serious deterioration in soil quality, plant growth, and human health. Therefore, restoration of soil quality is imperative. Phytoremediation is inexpensive and yields acceptable outcomes. Phytoremediation involves interaction between plant physiology and microbial activity and has been widely used in the remediation of Cd-contaminated soil. In the present study, Lolium perenne L. (perennial ryegrass) was planted in Cd-spiked soil and indole-3-acetic acid (IAA) was used to explore the physiological and biochemical characteristics of ryegrass as well as soil enzyme activity to remove Cd. The present study provides a theoretical basis for the phytoremediation of Cd-contaminated soil. The study investigated the effect of 30-mg/kg Cd-spiked soil on ryegrass (C) and 30-mg/kg Cd-spiked soil on ryegrass treated with 10-mg/kg IAA (CI) compared with uncontaminated soil and ryegrass as the control. At the end of the experiment, the ryegrass biomass, total chlorophyll, superoxide dismutase (SOD) activity, and soil invertase activity in C group were decreased by 33.7%, 23.0%, 29.7%, and 18.3%, respectively, whereas the peroxidase (POD) activity and soil basal respiration increased by 17.1% and 87.9%, respectively, compared with the control. In the CI group, the biomass of ryegrass, chlorophyll content, SOD activity, sucrase activity, fluorescein diacetate (FDA) hydrolase activity, and Cd removal rates increased by 14.5%, 19.9%, 24.3%, 12.1%, 20.4%, and 15.1%, respectively, whereas the POD activity, soil basal respiration, and Cd residues in the soil declined by 8.0%, 15.0%, and 17.0%, respectively, compared with the C group. Therefore, exposure to exogenous IAA alleviated the Cd stress on ryegrass and soil microorganisms and improved Cd absorption by ryegrass from the contaminated soil.


Asunto(s)
Cadmio , Ácidos Indolacéticos , Lolium , Microbiología del Suelo , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Clorofila/farmacología , Lolium/fisiología , Suelo/química , Contaminantes del Suelo/análisis , Superóxido Dismutasa
15.
Ecotoxicol Environ Saf ; 229: 113079, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34915222

RESUMEN

Oil pollution poses a great threat to environments and makes the remediation of oil-contaminated soils an urgent task. Microorganisms are the main biological factor for oil removal in the environment but microbial remediation is greatly affected by environmental factors. For our research, we inoculated three species of bacterivorous nematodes into oil-contaminated soil to explore how bacterivorous nematodes affect soil microbial activities and community structure in contaminated soil, as well as how efficiently different nematodes remove oil pollution from the soil. Six treatments were set in this experiment: sterilized oil-contaminated soil (SOC); nematode-free soil (S); oil-contaminated soil (OC); oil-contaminated soil + Caenorhabditis elegans (OCN1); oil-contaminated soil + Cephalobus persegnis (OCN2); oil-contaminated soil + Rhabditis marina (OCN3) for a 168-day incubation experiment. After the experiment was done, the oil contents in SOC, OC, OCN1, OCN2, and OCN3 were reduced by 6.5%, 32.3%, 38.2%, 42.8%, and 40.2%, respectively, compared with the beginning of the experiment. The amount of phospholipid fatty acids (PLFAs) of Gram-negative bacteria in OC, OCN1, OCN2, and OCN3 was increased by 50.9%, 43.4%, 37.7%, and 47.9%, respectively, compared with that of S. During the 168-day incubation period, the maximum growth of the number of nematodes in OCN1, OCN2, and OCN3 compared with the initial number of the nematodes were 2.25-, 1.52-, and 1.65-fold, respectively. The amount of oil residue in the contaminated soil negatively correlated with the populations of nematodes, total microorganisms, Gram-negative bacteria, actinomycetes, and eukaryotes. Thus, oil pollution increased the number of Gram-negative bacteria, decreased the ratio of Gram-positive bacteria/Gram-negative bacteria and Fungi/Bacteria significantly, and altered the community structure of soil microorganisms. Each species of bacterivorous nematodes has got its unique effect on the microbial activity and community structure in oil contaminated soils, but those tested can promote oil degradation and thus improve the environment of oil contaminated soils.


Asunto(s)
Microbiota , Nematodos , Contaminantes del Suelo , Animales , Biodegradación Ambiental , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
16.
Sci Total Environ ; 742: 140602, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32640389

RESUMEN

Biochar is a good adsorbent for water pollutants. However, the effects of biochar on aquatic organisms are not well understood. In this study, different amounts of biochar (CK, 0 mg/g; T1, 10 mg/g; T2, 30 mg/g) were added to sediment to study changes in water quality and its impact on three submerged macrophytes (Hydrilla verticillata, Vallisneria natans, and Ceratophyllum demersum) and the sediment microbial community. The results indicated that biochar treatments significantly increased the water pH and conductivity. Compared with the initial values, the total phosphorus (P) contents in the water of the CK, T1, and T2 treatments decreased by 78.5%, 95.0%, and 58.3%, respectively, while the total nitrogen contents increased by 26.26%, -5.81%, and 19.70%, respectively. Compared with those in CK, the relative growth rates of H. verticillata, V. natans, and C. demersum in T1 increased by 28.4%, 163.1%, and 61.3%, respectively, while those in T2 showed no significant difference except that the growth rates of H. verticillata decreased by 17.7%. The P contents of the three submerged macrophytes increased with the increase of biochar addition, except that there was no significant difference between T2 and CK for H. verticillata. Biochar treatments reduced the biomass of total microbial, bacterial, and fungal phospholipid fatty acids in the sediment for H. verticillata and V. natans, and they increased fungal: bacterial ratios in the low-dose biochar treatments for V. natans and C. demersum. This study demonstrates that the addition of biochar to sediment significantly increased the pH and conductivity, and decreased total P contents in the water. Low-dose biochar treatments were more beneficial for water quality improvements and the growth of submerged macrophytes than high-dose biochar.


Asunto(s)
Hydrocharitaceae , Calidad del Agua , Carbón Orgánico , Nitrógeno , Fósforo
17.
Ecotoxicol Environ Saf ; 191: 109998, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31796252

RESUMEN

Indoleacetic acid (IAA) is a plant growth regulator that plays an important role in plant growth and development, and participates in the regulation of abiotic stress. To explore the effect of IAA on cadmium toxicity in Cinnamomum camphora, an indoor potted experiment was conducted with one-year-old C. camphora seedlings. The influence of IAA on cadmium accumulation, net photosynthetic rates, respiration, photosynthetic pigments (chlorophyll a, chlorophyll b, total chlorophyll and carotenoids), osmoregulatory substances (proline, soluble sugar and soluble protein) and the malondialdehyde content in C. camphora leaves treated with 30 mg kg-1 cadmium was analysed with or without the addition of 10 mg kg-1 IAA. Cadmium accumulation in the leaves of C. camphora with the addition of exogenous IAA was significantly higher than accumulation during cadmium stress without additional IAA (ca 69.10% after 60 days' incubation). During the culture period, the net photosynthetic rate in C. camphora leaves subjected to cadmium stress without the addition of IAA was up to 24.31% lower than that of control plants. The net photosynthetic rate in C. camphora leaves subjected to cadmium stress and addition of IAA was up to 30.31% higher than that of leaves subjected to cadmium stress without the addition of IAA. Chlorophyll a, total chlorophyll and carotenoid contents in the cadmium-stressed leaves without the addition of IAA were lower than those in the control treatment. The presence of IAA increased the chlorophyll a, total chlorophyll and carotenoid contents relative to the cadmium stress without the addition of IAA. The respiration rate and concentrations of proline, soluble sugar, soluble protein and malondialdehyde in C. camphora leaves subjected to cadmium stress without the addition of IAA were higher than those in the control. The addition of IAA reduced the respiration rate, and the concentrations of proline, soluble sugar, soluble protein and malondialdehyde in C. camphora leaves when compared with the cadmium stress without the addition of IAA. These results indicate that exogenous IAA improves photosynthetic performance and the growth environment of C. camphora by enhancing the net photosynthetic rate, increasing concentrations of osmoregulatory substances, removing reactive oxygen radicals and eliminating potential damage, thereby reducing the toxic effects of cadmium on C. camphora.


Asunto(s)
Cadmio/toxicidad , Cinnamomum camphora/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Fotosíntesis/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Cadmio/farmacocinética , Carotenoides/metabolismo , Clorofila/metabolismo , Cinnamomum camphora/metabolismo , Osmorregulación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Estrés Fisiológico
18.
J Environ Manage ; 234: 424-430, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30640167

RESUMEN

Rapid economic development has caused an increase in serious pollution problems due to the ever-increasing use of oil and its products, thus making oil pollution control an urgent task. Studies have shown that large amounts of bacterial-feeding nematodes are present in oil-contaminated soil; their function is as yet unclear. In this experiment, different densities of Caenorhabditis elegans (C. elegans) were inoculated into artificially simulated oil-contaminated soil to examine their effects on microbial activity and the microbial community in oil-contaminated soil. Six treatments were investigated: sterilized oil-contaminated soil as control 1 (FSP), nematode-free soil as control 2 (S), oil-contaminated soil (SP), oil-contaminated soil + 5, 10 or 20 individual C. elegans per gram of dry soil (i.e., SPN5, SPN10, SPN20). Results showed that oil pollution significantly increased the soil basal respiration. However, C. elegans weakened the soil basal respiration to different degrees and soil microbial respiration entropy essentially changed in line with the soil basal respiration. Oil pollution and C. elegans boosted catalase activity in contaminated soil by approximately 64.2-145.1%. Soil urease activity of SPN5, SPN10 and SPN20 was 88.5%, 126.7% and 109.0% stronger, respectively, than that of SP. The inoculation of C. elegans changed the microbial phospholipid fatty acid content in the oil-contaminated soil, including soil bacteria, fungi, actinomycetes, Gram-positive bacteria (G+) and Gram-negative bacteria (G-). Therefore, this research demonstrates that C. elegans can stimulate microbial reproduction in oil-contaminated soil, enhance related soil enzyme activities and regulate soil microbial community structure and diversity, thereby improving the contaminated soil environment and promoting oil degradation.


Asunto(s)
Microbiota , Nematodos , Contaminantes del Suelo , Animales , Bacterias , Caenorhabditis elegans , Suelo , Microbiología del Suelo
19.
Environ Sci Pollut Res Int ; 25(35): 35614-35622, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30353434

RESUMEN

Increasing rates of oil exploitation and utilization are associated with increasing rates of oil pollution in soil. Nematodes are abundant in soils with or without oil contamination, among which bacterial-feeding nematodes are the dominant group. However, their function in oil-contaminated soil is unclear. This study explores the effects of bacterial-feeding nematode and organic matter addition on microbial activity and oil degradation in contaminated soil. Experiments were conducted using six treatments of oil-contaminated soil: sterilized (Control), nematode-free (OC), nematode addition (OCN), nematode + wheat straw addition (OCNW), nematode + rapeseed cake addition (OCNR), and nematode + biochar addition (OCNB). At the end of a 168-day incubation experiment, the oil concentration of OCN soil was 26.77% lower than that of OC soil, and those of OCNW, OCNR, and OCNB were 12.83%, 27.81%, and 4.77% lower, respectively, than that of OCN soil. Over the experiment, soil microbial biomass carbon, fluorescein diacetate hydrolysis activity, and dehydrogenase activity increased by 4.35-382.30%, 1.75-302.22%, and - 2.73-224.55%, respectively, in oil-contaminated soils, with or without nematode and organic matter addition. These results suggest that the addition of organic matter and bacterial-feeding nematodes to oil-contaminated soil can promote the growth and activity of microorganisms that break down oil.


Asunto(s)
Caenorhabditis elegans/metabolismo , Escherichia coli/metabolismo , Contaminación por Petróleo/análisis , Petróleo/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis , Animales , Biomasa , Carbón Orgánico/química , Suelo/química
20.
Environ Sci Technol ; 47(23): 13375-84, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24219167

RESUMEN

Organic matter (OM) is present in most terrestrial environments and is often found coprecipitated with ferrihydrite (Fh). Sorption or coprecipitation of OM with Fe oxides has been proposed to be an important mechanism for long-term C preservation. However, little is known about the impact of coprecipitated OM on reductive dissolution and transformation of Fe(III) (oxyhydr)oxides. Thus, we study the effect of humic acid (HA) coprecipitation on Fh reduction and secondary mineral formation by the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens strain CN32. Despite similar crystal structure for all coprecipitates investigated, resembling 2-line Fh, the presence of coprecipitated HA resulted in lower specific surface areas. In terms of reactivity, coprecipitated HA resulted in slower Fh bioreduction rates at low C/Fe ratios (i.e., C/Fe ≤ 0.8), while high C/Fe ratios (i.e., C/Fe ≥ 1.8) enhanced the extent of bioreduction compared to pure Fh. The coprecipitated HA also altered the secondary Fe mineralization pathway by inhibiting goethite formation, reducing the amount of magnetite formation, and increasing the formation of a green rust-like phase. This study indicates that coprecipitated OM may influence the rates, pathway, and mineralogy of biogeochemical Fe cycling and anaerobic Fe respiration within soils.


Asunto(s)
Compuestos Férricos/química , Compuestos Férricos/metabolismo , Sustancias Húmicas , Precipitación Química , Óxido Ferrosoférrico/química , Óxido Ferrosoférrico/metabolismo , Compuestos de Hierro/química , Compuestos de Hierro/metabolismo , Minerales/química , Minerales/metabolismo , Oxidación-Reducción , Shewanella putrefaciens/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA