Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Cell Res ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103524

RESUMEN

The hierarchical packaging of chromatin fibers plays a critical role in gene regulation. The 30-nm chromatin fibers, a central-level structure bridging nucleosomal arrays to higher-order organizations, function as the first level of transcriptional dormant chromatin. The dynamics of 30-nm chromatin fiber play a crucial role in biological processes related to DNA. Here, we report a 3.6-angstrom resolution cryogenic electron microscopy structure of H5-bound dodecanucleosome, i.e., the chromatin fiber reconstituted in the presence of linker histone H5, which shows a two-start left-handed double helical structure twisted by tetranucleosomal units. An atomic structural model of the H5-bound chromatin fiber, including an intact chromatosome, is built, which provides structural details of the full-length linker histone H5, including its N-terminal domain and an HMG-motif-like C-terminal domain. The chromatosome structure shows that H5 binds the nucleosome off-dyad through a three-contact mode in the chromatin fiber. More importantly, the H5-chromatin structure provides a fine molecular basis for the intra-tetranucleosomal and inter-tetranucleosomal interactions. In addition, we systematically validated the physiological functions and structural characteristics of the tetranucleosomal unit through a series of genetic and genomic studies in Saccharomyces cerevisiae and in vitro biophysical experiments. Furthermore, our structure reveals that multiple structural asymmetries of histone tails confer a polarity to the chromatin fiber. These findings provide structural and mechanistic insights into how a nucleosomal array folds into a higher-order chromatin fiber with a polarity in vitro and in vivo.

2.
Arch Gerontol Geriatr ; 128: 105560, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213747

RESUMEN

BACKGROUND: Recent studies have suggested a possible link between sarcopenia, immune dysregulation, and chronic inflammation, although the specific immune components implicated remain unclear. This investigation employs Mendelian Randomization (MR) to explore the reciprocal relationship between immune cells, inflammatory markers, and sarcopenia. METHOD: We performed two-sample and multivariate MR analyses using publicly accessible genome-wide association studies (GWAS) summary statistics. Our analyses included 731 immune cells, 41 inflammatory cytokines, and sarcopenia related traits (appendicular lean mass [ALM], low hand-grip strength [LHS], and walking pace [WP]), with additional sensitivity analyses conducted to confirm the findings. RESULTS: After false discovery rate (FDR) correction, significant associations were found between ten immune traits and ALM, with the CD127 marker in the Treg panel showing consistent positive correlation across four sites. In contrast, NKT%lymphocyte negatively correlated with WP (OR = 0.99, P = 0.023). In terms of inflammatory cytokines, macrophage colony-stimulating factor (MCSF) (OR = 1.03, P = 0.024) and hepatocyte growth factor (HGF) (OR = 1.03, P = 0.002) demonstrated positive associations with ALM, while interleukin-16 (IL-16) (OR = 0.99, P = 0.006) was inversely related. The reverse Mendelian randomization analysis found no direct causal links between sarcopenia traits and immune or inflammatory markers. Sensitivity analyses underscored the findings' resilience to pleiotropy, and adjusting for inter-trait dynamics weakened these relationships in the multivariable MR analysis. CONCLUSION: Our study reveals causal associations between specific immune phenotypes, inflammatory cytokines, and sarcopenia, providing insight into the development of sarcopenia and potential treatment strategies.

3.
Chem Sci ; 15(26): 10182-10192, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38966361

RESUMEN

Significant water-related side reactions hinder the development of highly safe, low-cost aqueous zinc metal batteries (AZMBs) for grid-scale energy storage. Herein, by regulating the length of alkyl chains, we successfully adjust interstitial voids between the polymer chains of a metal soap interface between 1.48 Å (size of a zinc ion) and 4.0 Å (size of a water molecule). Therefore, water molecules are selectively "size-excluded," while smaller zinc ions are permitted to pass through. Consequently, water-related side reactions (including hydrogen evolution and corrosion) could be effectively inhibited. Furthermore, abundant zinc ion tunnels accompanied with zincophilic components facilitate the homogenization of the Zn2+ flux, thus preventing dendrite growth. Therefore, the Zn symmetric cell shows a lifespan of approximately 10 000 cycles at 20 mA cm-2 and 1 mA h cm-2, and the Zn//Na5V12O32 (NVO) full cell delivers much better cycling stability with much higher capacity retention of around 93% after 2000 cycles at 2 A g-1 compared to its bare Zn counterpart (19%). This work provides valuable insights for the utilization of metal soap interfaces and regulation of their channel size between perpendicular alkyl chains to realize precise water shielding, which is not only applicable in ZMBs but also in other aqueous batteries.

4.
Elife ; 122024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656297

RESUMEN

Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome stability and integrity in eukaryotes. In the baker's yeast Saccharomyces cerevisiae, the X- and Y'-elements are subtelomeric repetitive sequences found in all 32 and 17 telomeres, respectively. While the Y'-elements serve as a backup for telomere functions in cells lacking telomerase, the function of the X-elements remains unclear. This study utilized the S. cerevisiae strain SY12, which has three chromosomes and six telomeres, to investigate the role of X-elements (as well as Y'-elements) in telomere maintenance. Deletion of Y'-elements (SY12YΔ), X-elements (SY12XYΔ+Y), or both X- and Y'-elements (SY12XYΔ) did not impact the length of the terminal TG1-3 tracks or telomere silencing. However, inactivation of telomerase in SY12YΔ, SY12XYΔ+Y, and SY12XYΔ cells resulted in cellular senescence and the generation of survivors. These survivors either maintained their telomeres through homologous recombination-dependent TG1-3 track elongation or underwent microhomology-mediated intra-chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric X- and Y'-elements in telomere regulation in both telomerase-proficient and telomerase-null cells and suggest that these elements may represent remnants of S. cerevisiae genome evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise telomere structures and offer potential models for future studies in telomere biology.


Asunto(s)
Secuencias Repetitivas de Ácidos Nucleicos , Saccharomyces cerevisiae , Telomerasa , Telómero , Saccharomyces cerevisiae/genética , Telómero/metabolismo , Telómero/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Telomerasa/genética , Telomerasa/metabolismo , Homeostasis del Telómero , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia
5.
Inorg Chem ; 63(12): 5727-5733, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38470094

RESUMEN

Nickel-rich layered oxides are envisaged as one of the most promising alternative cathode materials for lithium-ion batteries, considering their capabilities to achieve ultrahigh energy density at an affordable cost. Nonetheless, with increasing Ni content in the cathodes comes a severe extent of Ni4+ redox side reactions on the interface, leading to fast capacity decay and structural stability fading over extended cycles. Herein, dual additives of bis(vinylsulfonyl)methane (BVM) and lithium difluorophosphate (LiDFP) are adopted to synergistically generate the F-, P-, and S-rich passivation layer on the cathode, and the Ni4+ activity and dissolution at high voltage are restricted. The sulfur-rich layer formed by the polymerization of BVM, combined with the Li3PO4 and LiF phases derived from LiDFP, alleviates the problems of increased impedance, cracks, and an irreversible H2-H3 phase transition. Consequently, the Ni-rich LiNixM1-xO2 (x > 0.95) button half-cell cycled in LiDFP + BVM electrolyte exhibits a significant discharging capacity of 181.4 mAh g-1 at 1 C (1 C = 200 mA g-1) with retention of 83.7% after 100 cycles, surpassing the performance of the commercial electrolyte (160.7 mAh g-1) with retention of 53.3%. Remarkably, the NCM95||graphite pouch cell exhibits a remarkable capacity retention of 95.5% after 200 cycles. This work inspires the rational design of electrolyte additives for ultrahigh-energy batteries with nickel-rich layered oxide cathodes.

6.
Angew Chem Int Ed Engl ; 63(20): e202320258, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38456300

RESUMEN

Large-scale energy storage devices play pivotal roles in effectively harvesting and utilizing green renewable energies (such as solar and wind energy) with capricious nature. Biphasic self-stratifying batteries (BSBs) have emerged as a promising alternative for grid energy storage owing to their membraneless architecture and innovative battery design philosophy, which holds promise for enhancing the overall performance of the energy storage system and reducing operation and maintenance costs. This minireview aims to provide a timely review of such emerging energy storage technology, including its fundamental design principles, existing categories, and prototype architectures. The challenges and opportunities of this undergoing research topic will also be systematically highlighted and discussed to provide guidance for the subsequent R&D of superior BSBs while conducive to bridging the gap for their future practical application.

7.
Osteoporos Int ; 35(5): 759-773, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38224388

RESUMEN

This study reviewed the risk factors of Osteosarcopenic obesity (OSO), a condition linking weak bones, muscle loss, and obesity. Notable associations were found with female gender, physical inactivity, hypertension, and frailty. Recognizing these early can aid targeted prevention, emphasizing further research for improved understanding and strategies. PURPOSE: Osteosarcopenic obesity (OSO) represents a confluence of osteopenia/osteoporosis, sarcopenia, and obesity, contributing to increased morbidity and mortality risks. Despite escalating prevalence, its risk factors remain under-explored, necessitating this comprehensive systematic review and meta-analysis. METHODS: A diligent search of PubMed, Scopus, and Cochrane databases was conducted for pertinent studies until June 2023. The random-effects model was employed to compute pooled odds ratios (ORs) and 95% confidence intervals (CIs), scrutinizing various risk factors like age, gender, lifestyle factors, and common comorbidities. RESULTS: Our meta-analysis incorporated 21 studies comprising 178,546 participants. We identified significant associations between OSO and factors such as female gender (OR 1.756, 95% CI 1.081 to 2.858), physical inactivity (OR 1.562, 95% CI 1.127-2.165), and hypertension (OR 1.482, 95% CI 1.207-1.821). Conversely, smoking (OR 0.854, 95% CI 0.672-1.084), alcohol consumption (OR 0.703, 95% CI 0.372-1.328), and dyslipidemia (OR 1.345, 95% CI 0.982-1.841) showed no significant associations. Remarkable heterogeneity was observed across studies, indicating considerable variation in effect sizes. Notably, OSO was strongly associated with frailty (OR 6.091; 95% CI 3.576-10.375). CONCLUSIONS: Our study underscored the substantial role of female gender, physical inactivity, and hypertension in the development of OSO, whilst suggesting a strong link between OSO and frailty. These findings emphasize the importance of early risk factor identification and targeted interventions in these groups. Further research is warranted to decode the complex pathophysiological interplay and devise effective prevention and management strategies.


Asunto(s)
Enfermedades Óseas Metabólicas , Comorbilidad , Estilo de Vida , Sarcopenia , Humanos , Factores de Riesgo , Sarcopenia/epidemiología , Sarcopenia/fisiopatología , Factores Sexuales , Enfermedades Óseas Metabólicas/epidemiología , Enfermedades Óseas Metabólicas/fisiopatología , Femenino , Obesidad/epidemiología , Obesidad/complicaciones , Obesidad/fisiopatología , Masculino , Hipertensión/epidemiología , Hipertensión/fisiopatología , Conducta Sedentaria , Osteoporosis/epidemiología , Osteoporosis/fisiopatología
8.
J Phys Chem Lett ; 15(2): 380-390, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38175719

RESUMEN

The industrialization of aqueous zinc-ion batteries (AZIBs) is hampered by poor-performance separators. Filter paper (FP), with mature production processes and low prices, has potential as a separator. However, its swelling and decline of mechanical durability in aqueous environments make it easily punctured by dendrites. In response, wet strength promotion is proposed to toughen FP for robust AZIBs, termed wet-strengthened FP (WSFP). Due to the self-cross-linking network formed on cellulose fibers, water molecules are prevented from easily permeating and disrupting the hydrogen bonds between cellulose molecules. Moreover, the positively charged network can anchor SO42-, thus increasing the Zn2+ transference number and facilitating uniform zinc deposition. Surprisingly, the half and full cells with the WSFP separator present much more stable cycling than untreated FP and glass fiber (GF) separators. These results suggest that robust and low-cost WSFP separators provide a new avenue for the development of high-performance AZIBs with potential for commercialization.

9.
J Phys Chem Lett ; 15(3): 733-743, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38226607

RESUMEN

Solid composite electrolytes (SCEs) synergize inorganic and polymer merits for viable commercial application. However, inferior filler-polymer interfacial stability ultimately leads to the agglomeration of inorganic particles and greatly impedes Li+ migration. Herein, triethoxyvinylsilane (VTEO) is employed to form a strong chemical interaction between poly(vinylene carbonate) (PVC) and montmorillonite (MMT) via in situ solidification, which eliminates the agglomeration and improves interfacial compatibility. Consequently, the obtained solid composite electrolytes (PVC-s-MMT) achieve increased Li+ conductivity (0.4 mS cm-1 at 25 °C), enhanced transference number (0.74), and increased oxidation potential (5.2 V). The Li/PVC-s-MMT/LiFePO4 cells exhibit outstanding cycling performance (>99.5% after 600 cycles) at 1C at room temperature. Moreover, density functional theory (DFT) calculations are applied to uncover the fast interfacial conducting channels of PVC-s-MMT. Our work provides a feasible in situ synthesis method to prepare agglomeration-free SCEs, which is highly compatible with existing battery production processes of liquid electrolytes.

10.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 315-322, 2024 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273782

RESUMEN

SRP14 is a crucial protein subunit of the signal recognition particle (SRP), a ribonucleoprotein complex essential for co-translational translocation to the endoplasmic reticulum. During our investigation of SRP14 expression across diverse cell lines, we observe variations in its migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), with some cells exhibiting slower migration and others migrating faster. However, the cause of this phenomenon remains elusive. Our research rules out alternative splicing as the cause and, instead, identifies the presence of a P124A mutation in SRP14 (SRP14 P124A) among the faster-migrating variants, while the slower-migrating variants lack this mutation. Subsequent ectopic expression of wild-type SRP14 P124 or SRP14 WT and SRP14 P124A in various cell lines confirms that the P124A mutation indeed leads to faster migration of SRP14. Further mutagenesis analysis shows that the P117A and A121P mutations within the alanine-rich domain at the C-terminus of SRP14 are responsible for migration alterations on SDS-PAGE, whereas mutations outside this domain, such as P39A, Y27F, and T45A, have no such effect. Furthermore, the ectopic expression of SRP14 WT and SRP14 P124A yields similar outcomes in terms of SRP RNA stability, cell morphology, and cell growth, indicating that SRP14 P124A represents a natural variant of SRP14 and retains comparable functionality. In conclusion, the substitution of proline for alanine in the alanine-rich tail of SRP14 results in faster migration on SDS-PAGE, but has little effect on its function.


Asunto(s)
Alanina , Partícula de Reconocimiento de Señal , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo , Mutación , Mutagénesis , Electroforesis en Gel de Poliacrilamida , Alanina/genética
11.
ACS Nano ; 17(21): 21614-21625, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37916674

RESUMEN

Despite the numerous advantages of aqueous Zn batteries, their practical application under cryogenic conditions is hindered by the freezing of the electrolyte because the abundance of hydrogen bonds (H-bonds) between H2O molecules drives the aqueous system to transform to an orderly frozen structure. Here, a design of H-bond interactions based on the guiding ideology of "strong replaces weak" is proposed. The strong H-bonds formed between introduced eutectic components and water molecules break down the weak H-bonds in the original water molecule network, which contributes to an ultralow freezing point and a high ionic conductivity of 1.7 mS cm-1 at -40 °C. Based on multiperspective theoretical simulations and tailor-made in situ cooling Raman characterizations, it has been demonstrated that substituting weak H-bonds with strong H-bonds facilitates the structural reshaping of Zn2+ solvation and remodeling of the H-bond network in the electrolyte. Endowed with this advantage, reversible and stable Zn plating/stripping behaviors could be realized at -40 °C, and the full cells display a high discharge capacity (200 mA h g-1) at -40 °C with ∼75% capacity retention after 1000 cycles. This study will expand the design philosophy of antifreezing aqueous electrolytes and provide a perspective to promote the adoption of Zn metal batteries for cryogenic environment large-scale energy storage.

12.
Nano Lett ; 23(22): 10148-10156, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37922398

RESUMEN

Dendrite growth and corrosion of Zn metal anodes result in the limited reversibility of aqueous Zn metal batteries (ZMBs), hindering their prospects as large-scale energy storage devices. Inspired by the similarity of conventional electroplating industrial engineering and Zn deposition in ZMBs, we tend to utilize a low-cost leveling agent (LEA), 1,4-butynediol, to level the Zn deposition. Combining theoretical with in situ experimental characterizations, the preferential adsorption of LEA molecules on different lattice planes can contribute to crystallographic orientation manipulation of the (002) plane, causing good inhibition of dendrite growth. Additionally, the adsorption of LEA molecules on the Zn surface can also prevent undesirable corrosion. Endowed with these merits, symmetric cells and full cells with the LEA additive achieve improved stability and reversibility. This work provides new inspiration for introducing traditional electroplating additives into high-performance ZMBs and gives researchers a direction for choosing electrolyte additives, which also has potential to be applied to other metal anodes.

13.
J Phys Chem Lett ; 14(44): 9986-9995, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37906171

RESUMEN

Side reactions caused by highly active water molecules, including severe corrosion, hydrogen evolution, and dendrite growth, are impediments to the advancement of aqueous zinc ion batteries (ZIBs). Here, inspired by the pivotal role of plant fibers to prevent dehydration in nature, we designed a unique water-retaining plant fiber (WRPF) separator with strong hygroscopic ability to adsorb and trap water molecules. Elaborated theoretical and experimental characterizations prove that high-activity water could be sequestered by a WRPF separator, alleviating water-induced side reactions and accelerating the desolvation of hydrate Zn2+. Prominently, reversible Zn plating and stripping could be realized in Zn//Cu batteries. Even with elevated cathodic mass loading (21.94 mg cm-2), the Zn//VS2 full cell delivers high areal capacity 3.3 mAh cm-2 and well-maintained stability. The present study offers a versatile design strategy for separators using nature-inspired materials, aiming to address the challenging issue of "water" and achieve ultrastable interfacial chemistry of Zn anode.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123227, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37544217

RESUMEN

Glutathione (GSH), an active peptide, plays pivotal roles in many physiological processes and detection of GSH inside of human body is of great importance for the playing of its biological effects. Here silver-phosphorus co-doped carbonized polymer dots (Ag@PCPDs) were prepared via solvothermal treatment of citric acid and phytic acid in the presence of Ag+ for GSH determination. The physicochemical and optical performance of the Ag@PCPDs were characterized by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-IR), X-ray powder diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy and ultraviolet-visible (UV-Vis) spectroscopy analyses. The prepared Ag@PCPDs have outstanding water solubility with high monodispersity (7.81 ± 0.31 nm) and exhibited excellent optical properties with excitation-dependent emission, high photostability, pH, and ionic strength tolerance. An optimized excitation at 358 nm, the Ag@PCPDs showed strong photoluminescent (PL) emission at 456 nm with a PL quantum yield (QYs) of 15.6%. Furthermore, the Ag@PCPDs were used as a PL sensing platform for detection GSH in a linear range of 0-200 µM with a low limit of detection at 0.68 µM. In addition, the proposed system can construct molecular logic gates with GSH and Fe3+ ions as the chemical inputs and PL emissions as the output. And the Ag@PCPDs were successfully used for GSH determination in real samples resulting in high sensitivity and satisfactory recoveries (92.81--107.45%). More importantly, the Ag@PCPDs showed low cytotoxicity at 500 µg/mL and superior cell imaging capability in HeLa cells, which offer a new path for detection and categorization of GSH in biomedical applications.


Asunto(s)
Técnicas Biosensibles , Puntos Cuánticos , Humanos , Carbono/química , Células HeLa , Espectroscopía Infrarroja por Transformada de Fourier , Glutatión/análisis , Puntos Cuánticos/química
15.
Int J Qual Health Care ; 35(3)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37417461

RESUMEN

Since the public long-term care insurance (LTCI) system was piloted in Chengdu, China, in October 2017, there has been considerable growth of LTC institutions in China. This study aimed to evaluate the health value effect of LTCI in older patients with severe disabilities in an LTC institution. This prospective study was based on data from 985 severe disability patients with or without LTCI from October 2017 to May 2021 in the Eighth People's Hospital, Chengdu, China. The Cox proportional hazard model estimated LTCI's health value, including survival probability and risk of pneumonia/pressure ulcers. Subgroup analysis was performed for sex, age, Charlson Comorbidity Index (CCI), and the number of drugs. In the analysis, 519 and 466 patients in LTCI and non-LTCI groups were included, respectively. In adjusted Cox analyses, the LTCI group had a significantly elevated survival rate compared with the non-LTCI groups at 12 months (P < .001, hazard ratio (HR) = 1.758, 95% confidence interval (CI) 1.300-2.376). At 40 months, the adjusted survival rate was 62.6% in the LTCI group, which was significantly higher (53.7%; P = .003, HR = 1.438, 95% CI 1.131-1.831). The subgroups of patients aged 60 to 79 years (interaction P = .007) and with CCI ≥ 3 (interaction P = .026) were more significantly associated with survival improvement than those aged >80 years and with CCI< 3. The LTCI group was also at lower risk for hospital-acquired pneumonia (P = .016, HR 0.622, 95% CI 0.422-0.917) and pressure ulcers (P = .008, HR 0.695, 95% CI 0.376-0.862). The improved survival of LTCI remained stable in sensitivity analyses. For older patients with severe disabilities, in a LTC institution, LTCI significantly improved their health profile and longevity after a year, suggesting the large role and development potentiality of institution care in the LTCI system of China.


Asunto(s)
Seguro de Cuidados a Largo Plazo , Úlcera por Presión , Humanos , Anciano , Estudios Prospectivos , China , Evaluación de Resultado en la Atención de Salud , Cuidados a Largo Plazo
16.
DNA Repair (Amst) ; 127: 103512, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37230009

RESUMEN

In the baker's yeast Saccharomyces cerevisiae, NuA4 and SWR1-C, two multisubunit complexes, are involved in histone acetylation and chromatin remodeling, respectively. Eaf1 is the assembly platform subunit of NuA4, Swr1 is the assembly platform and catalytic subunit of SWR1-C, while Swc4, Yaf9, Arp4 and Act1 form a functional module, and is present in both NuA4 and SWR1 complexes. ACT1 and ARP4 are essential for cell survival. Deletion of SWC4, but not YAF9, EAF1 or SWR1 results in a severe growth defect, but the underlying mechanism remains largely unknown. Here, we show that swc4Δ, but not yaf9Δ, eaf1Δ, or swr1Δ cells display defects in DNA ploidy and chromosome segregation, suggesting that the defects observed in swc4Δ cells are independent of NuA4 or SWR1-C integrity. Swc4 is enriched in the nucleosome-free regions (NFRs) of the genome, including characteristic regions of RDN5s, tDNAs and telomeres, independently of Yaf9, Eaf1 or Swr1. In particular, rDNA, tDNA and telomere loci are more unstable and prone to recombination in the swc4Δ cells than in wild-type cells. Taken together, we conclude that the chromatin associated Swc4 protects nucleosome-free chromatin of rDNA, tDNA and telomere loci to ensure genome integrity.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Humanos , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Ribosómico , Cromatina , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/genética , Telómero/metabolismo , Inestabilidad Genómica , Ensamble y Desensamble de Cromatina , Histona Acetiltransferasas/genética , Factores de Transcripción/genética
17.
J Phys Chem Lett ; 14(19): 4482-4489, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37155225

RESUMEN

Thermal runaway, a complex chemical/electrochemical heat breakout process caused by complex abuse conditions, remains a big issue to significantly hinder further practical application of lithium batteries. Here we design and fabricate a smart thermoregulatory and self-healing gel electrolyte (TRSHGE) by cross-linking phase-transition chains to polymer networks through reversibly dynamic interactions while maintaining the desirable electrochemical performance. Impressively, on the one hand, the phase-transition chains with endothermic effects can efficiently accommodate the heat accumulation, enabling lithium batteries to work safely and normally even up to 80 °C. On the other hand, the dynamic covalent boronic eater bonds and hydrogen bonds endow the TRSHGE damage repairability upon mechanical shock even at the nail penetration test. Such smart electrolyte with thermoresistance and damage repairability indicates significant technological advancement toward the safe commercial application of lithium batteries, even great potential to develop other functional batteries beyond the lithium-based systems discussed herein.

18.
Nano Lett ; 23(8): 3181-3188, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37036714

RESUMEN

Sluggish desolvation in extremely cold environments caused by strong Li+-dipole interactions is a key inducement for the capacity decline of a battery. Although the Li+-dipole interaction is reduced by increasing the electrolyte concentration, its high viscosity inevitably limits ion transfer at low temperatures. Herein, Li+-dipole interactions were eliminated to accelerate the migration rate of ions in electrolytes and at the electrode interface via designing Li+-anion nanometric aggregates (LA-nAGGs) in low-concentration electrolytes. Li+ coordinated by TFSI- and FSI- anions instead of a donor solvent promotes the formation of an inorganic-rich interfacial layer and facilitates Li+ transfer. Consequently, the LA-nAGG-type electrolyte demonstrated a high ionic conductivity (0.6 mS cm-1) at -70 °C and a low activation energy of charge transfer (38.24 kJ mol-1), enabling Li||NiFe-Prussian blue derivative cells to deliver ∼83.1% of their room-temperature capacity at -60 °C. This work provides an advanced strategy for the development of low-temperature electrolytes.

19.
Nat Commun ; 14(1): 2267, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081028

RESUMEN

Biphasic self-stratified batteries (BSBs) provide a new direction in battery philosophy for large-scale energy storage, which successfully reduces the cost and simplifies the architecture of redox flow batteries. However, current aqueous BSBs have intrinsic limits on the selection range of electrode materials and energy density due to the narrow electrochemical window of water. Thus, herein, we develop nonaqueous BSBs based on Li-S chemistry, which deliver an almost quadruple increase in energy density of 88.5 Wh L-1 as compared with the existing aqueous BSBs systems. In situ spectral characterization and molecular dynamics simulations jointly elucidate that while ensuring the mass transfer of Li+, the positive redox species are strictly confined to the bottom-phase electrolyte. This proof-of-concept of Li-S BSBs pushes the energy densities of BSBs and provides an idea to realize massive-scale energy storage with large capacitance.

20.
Clin Nutr ; 42(6): 817-824, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37084468

RESUMEN

BACKGROUND: The European Society for Clinical Nutrition and Metabolism (ESPEN) and the European Association for the Study of Obesity (EASO) recently released the first international consensus on the diagnostic criteria for sarcopenic obesity (SO), which recommended skeletal muscle mass adjusted for body weight (SMM/W) to determine low muscle mass. SMM adjusted for body mass index (SMM/BMI) appeared to be better associated with physical performance than SMM/W. Thus, we modified the ESPEN/EASO criteria by using SMM/BMI. We aimed (1) to evaluate the agreement of the ESPEN/EASO-defined SO (SOESPEN) and the modified ESPEN/EASO-defined SO (SOESPEN-M) with other commonly used SO definitions, and (2) to compare different SO definitions for predicting mortality in a prospective cohort with advanced non-small cell lung cancer (NSCLC). METHODS: This prospective study included patients with advanced NSCLC. We defined SO according to five different diagnostic criteria: SOESPEN, SOESPEN-M, Asian Working Group for Sarcopenia (AWGS)-determined sarcopenia with BMI-determined obesity (SOAWGS), computed tomography-derived sarcopenia with BMI-determined obesity (SOCT), and fat mass to fat-free mass ratio >0.8 (SOFM). The outcome was all-cause mortality. RESULTS: Of the 639 participants (mean age 58.6 years, 229 women) we studied, 488 (76.4%) died during the median follow-up period of 25 months. SMM/BMI was significantly lower in the death group than in the survivor group (men: p = 0.001, women: p < 0.001), but SMM/W was not. Only 3 (0.47%) participants met all five SO diagnostic criteria. SOESPEN showed an excellent agreement with SOESPEN-M (Cohen's kappa = 0.896), a moderate agreement with SOAWGS (Cohen's kappa = 0.415), but poor agreements with SOCT and SOFM (Cohen's kappa = 0.078 and 0.092, respectively). After full adjustment for potential confounders, SOESPEN (HR 1.54, 95% CI 1.26-1.89), SOESPEN-M (HR 1.56, 95% CI 1.26-1.92), and SOAWGS (HR 1.43, 95% CI 1.14-1.78) were significantly associated with mortality. However, SOCT (HR 1.17, 95% CI 0.87-1.58) and SOFM (HR 1.15, 95% CI 0.90-1.46) showed no significant association with mortality. CONCLUSIONS: SOESPEN showed an excellent agreement with SOESPEN-M, a moderate agreement with SOAWGS, but poor agreements with SOCT and SOFM. SOESPEN, SOESPEN-M, and SOAWGS were independent prognostic factors for mortality in our study population, but SOCT and SOFM were not. Although SMM/BMI was better associated with survival than SMM/W, SOESPEN-M did not show an advantage in predicting survival over SOESPEN.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Sarcopenia , Masculino , Humanos , Femenino , Persona de Mediana Edad , Sarcopenia/epidemiología , Estudios Prospectivos , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Composición Corporal/fisiología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/complicaciones , Obesidad/epidemiología , Índice de Masa Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...