Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 196: 106759, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570053

RESUMEN

Xuebijing injection (XBJ) is widely used to treat nephrotic syndrome (NS) in clinic, but its bioactive components and therapeutic mechanism are still unclear. In this study, the bioactive components of XBJ were determined by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS). The therapeutic effect of XBJ on NS was evaluated in BALB/c mice induced by adriamycin (ADR, 10 mg/kg) via a single tail vein. The protective effect of XBJ and its bioactive components on podocytes was demonstrated using mouse podocytes (MPC-5) induced by lipopolysaccharide (LPS, 4 µg/mL). The results show that 33 components of XBJ were identified. Furthermore, 12 bioactive components were detected in blood, including protocatechuic acid, salvianolic acid C, benzoyloxypaeoniflorin, danshensu, salvianolic acid A, salvianolic acid B, catechin, caffeic acid, galloylpaeoniflorin, oxypaeoniflorin, hydroxysafflor yellow A, rosmarinic acid. The relative content (%) of the bioactive components were 59.32, 16.01, 9.97, 9.73, 8.72, 8.31, 7.92, 6.54, 1.54, 1.30, 0.68 and 0.59 in this order. After XBJ treatment, the renal function, hyperlipidemia and renal pathological damage were improved in NS model mice. Moreover, the levels of nephrin and desmin which are functional proteins in podocytes were reversed, and the levels of pro-inflammatory factors were reduced by XBJ. Interestingly, protocatechuic acid and salvianolic acid C also showed good protective effects on podocyte function and reduced the level of inflammation in LPS-induced MPC-5. The study is the first time to elucidate the bioactive components of XBJ and its potential therapeutic mechanism for treating NS by protecting podocyte function.

2.
Chin Herb Med ; 16(1): 3-12, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38375050

RESUMEN

To promote the development of extracellular vesicles of herbal medicine especially the establishment of standardization, led by the National Expert Committee on Research and Application of Chinese Herbal Vesicles, research experts in the field of herbal medicine and extracellular vesicles were invited nationwide with the support of the Expert Committee on Research and Application of Chinese Herbal Vesicles, Professional Committee on Extracellular Vesicle Research and Application, Chinese Society of Research Hospitals and the Guangdong Engineering Research Center of Chinese Herbal Vesicles. Based on the collation of relevant literature, we have adopted the Delphi method, the consensus meeting method combined with the nominal group method to form a discussion draft of "Consensus statement on research and application of Chinese herbal medicine derived extracellular vesicles-like particles (2023)". The first draft was discussed in online and offline meetings on October 12, 14, November 2, 2022 and April and May 2023 on the current status of research, nomenclature, isolation methods, quality standards and research applications of extracellular vesicles of Chinese herbal medicines, and 13 consensus opinions were finally formed. At the Third Academic Conference on Research and Application of Chinese Herbal Vesicles, held on May 26, 2023, Kewei Zhao, convenor of the consensus, presented and read the consensus to the experts of the Expert Committee on Research and Application of Chinese Herbal Vesicles. The consensus highlights the characteristics and advantages of Chinese medicine, inherits the essence, and keeps the righteousness and innovation, aiming to provide a reference for colleagues engaged in research and application of Chinese herbal vesicles at home and abroad, decode the mystery behind Chinese herbal vesicles together, establish a safe, effective and controllable accurate Chinese herbal vesicle prevention and treatment system, and build a bridge for Chinese medicine to the world.

3.
Nat Commun ; 14(1): 5004, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591889

RESUMEN

MRGPRX1, a Mas-related GPCR (MRGPR), is a key receptor for itch perception and targeting MRGPRX1 may have potential to treat both chronic itch and pain. Here we report cryo-EM structures of the MRGPRX1-Gi1 and MRGPRX1-Gq trimers in complex with two peptide ligands, BAM8-22 and CNF-Tx2. These structures reveal a shallow orthosteric pocket and its conformational plasticity for sensing multiple different peptidic itch allergens. Distinct from MRGPRX2, MRGPRX1 contains a unique pocket feature at the extracellular ends of TM3 and TM4 to accommodate the peptide C-terminal "RF/RY" motif, which could serve as key mechanisms for peptidic allergen recognition. Below the ligand binding pocket, the G6.48XP6.50F6.51G6.52X(2)F/W6.55 motif is essential for the inward tilting of the upper end of TM6 to induce receptor activation. Moreover, structural features inside the ligand pocket and on the cytoplasmic side of MRGPRX1 are identified as key elements for both Gi and Gq signaling. Collectively, our studies provide structural insights into understanding itch sensation, MRGPRX1 activation, and downstream G protein signaling.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Citoplasma , Citosol , Ligandos , Prurito
4.
Life Sci ; 330: 121991, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37524161

RESUMEN

Dysfunction of mesangial cells plays a significant role in the glomerular lesions and is implicated in the pathophysiology of diabetic nephropathy (DN). Macrophages infiltration is the main pathological feature of DN, which can ultimately lead to renal inflammation. Recent studies suggest that the crosstalk between kidney resident cells and inflammatory cells influences the development of DN, and that controlling this crosstalk may help treat DN. Here, we found that DN mice appeared renal pathological damage, including dilation of mesangial matrix and significant infiltration of macrophages, accompanied by increased inflammatory response, NLRP3 inflammasome activation and autophagy deficiency. Additionally, mesangial cells internalized exosomes from high glucose (HG) treated macrophage, resulting the activation of inflammatory cytokines and NLRP3 inflammasome and deficiency of autophagy in vitro and in vivo. Moreover, C57BL/6 mice injected HG-stimulated macrophages-derived exosomes exhibited renal dysfunction and mesangial matrix expansion. Taken together, the present study demonstrated that mesangial cells responded to HG treated macrophage-derived exosomes by promoting the activation of NLRP3 inflammasome and autophagy deficiency, thereby participating in the development of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Exosomas , Ratones , Animales , Inflamasomas , Nefropatías Diabéticas/patología , Proteína con Dominio Pirina 3 de la Familia NLR , Células Mesangiales , Exosomas/patología , Ratones Endogámicos C57BL , Autofagia , Macrófagos/patología
5.
Phytomedicine ; 116: 154901, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37247587

RESUMEN

BACKGROUND: Macrophages M1 polarization involved in the process of renal inflammatory injury, is a well-established hallmark of chronic kidney disease (CKD). Paeoniflorin (PF), a water-soluble monoterpene glycoside extracted from Paeonia lactiflora, revealed renal anti-inflammatory activities in our previous study. However, the potential molecular mechanism of PF on CKD remains unknown. PURPOSE: The present study aims to investigate the regulation of PF on macrophage polarization in CKD. METHODS: A CKD model was established by cationic bovine serum albumin and a murine macrophage cell line RAW264.7 induced with lipopolysaccharide (LPS) were used to clarify the underlying mechanisms of PF in CKD. RESULTS: Results showed that PF exhibited favorable protective effects on CKD model mice by promoting renal function, ameliorating renal pathological injury and podocyte damage. Furthermore, PF inhibited the infiltration of M1 macrophage marker CD68 and iNOS in kidney tissue, but increased the proportion of M2 macrophage marker CD206. In RAW264.7 cells stimulated with LPS, the levels of cytokines including IL-6, IL-1ß, TNF-α, MCP-1 were lessened under PF treatment, while the levels of Arg1, Fizz1, IL-10 and Ym-1 were augmented. These results indicated that PF promoted macrophage polarization from M1 to M2 in vivo and in vitro. More importantly, PF repaired the damaged mitochondria through increasing mitochondrial membrane potential and reducing ROS accumulation. The mitophagy-related proteins PINK1, Parkin, Bnip3, P62 and LC3 were up-regulated by PF, accompanied by the incremental expressions of Krüppel-like transcription factor 4 (KLF4). Moreover, the promotion of mitophagy and inhibition of M1 macrophage polarization owing to PF were reversed by mitophagy inhibitor Mdivi-1 or silencing KLF4. CONCLUSION: Overall, PF suppressed renal inflammation by promoting macrophage polarization from M1 to M2 and inducing mitophagy via regulating KLF4. It is expected to provide a new strategy for exploring the effects of PF in treating CKD.


Asunto(s)
Nefritis , Insuficiencia Renal Crónica , Ratones , Animales , Lipopolisacáridos/farmacología , Mitofagia , Macrófagos , Nefritis/patología , Riñón/patología , Monoterpenos/farmacología , Inflamación/metabolismo
6.
Phytother Res ; 37(1): 310-328, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36086867

RESUMEN

Prostate cancer (PCa) is the most common malignant tumor in males, which frequently develops into castration-resistant prostate cancer (CRPC) with limited therapies. Gambogenic acid (GNA), a flavonoids compound isolated from Gamboge, exhibits anti-tumor capacity in various cancers. Our results showed that GNA revealed not only antiproliferative and pro-apoptotic activities but also the induction of autophagy in PCa cells. In addition, autophagy inhibitor chloroquine enhanced the pro-apoptosis effect of GNA. Moreover, the activation of JNK pathway and the induction of apoptosis and autophagy triggered by GNA were attenuated by JNK inhibitor SP600125. We also found that GNA significantly promoted reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress. Meanwhile, suppressing ER stress with 4-phenylbutyric acid (4-PBA) markedly blocked the activation of JNK pathway induced by GNA. Further research indicated that ROS scavenger N-acetyl-L-cysteine (NAC) effectively abrogated ER stress and JNK pathway activation induced by GNA. Furthermore, NAC and 4-PBA significantly reversed GNA-triggered apoptosis and autophagy. Finally, GNA remarkably suppressed prostate tumor growth with low toxicity in vivo. In conclusion, the present study revealed that GNA induced apoptosis and autophagy through ROS-mediated ER stress via JNK signaling pathway in PCa cells. Thus, GNA might be a promising therapeutic drug against PCa.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neoplasias de la Próstata , Masculino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Estrés del Retículo Endoplásmico , Autofagia , Línea Celular Tumoral , Acetilcisteína/metabolismo , Acetilcisteína/farmacología , Neoplasias de la Próstata/tratamiento farmacológico
7.
Phytomedicine ; 107: 154477, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36215790

RESUMEN

BACKGROUND: Danshen injection (DSI) is an agent extracted from the Salvia miltiorrhiza Bunge, a natural drug commonly used to alleviate kidney diseases. However, the material basis and therapeutic effects of DSI on nephrotic syndrome (NS) remain unclear. PURPOSE: To investigate the material basis of DSI and the therapeutic effects and underlying mechanisms of NS. METHODS: NS models were established using adriamycin-induced BALB/c mice and lipopolysaccharide-induced mouse podocytes (MPC-5). Following DSI and prednisone administration, kidney coefficients, 24 h urine protein, blood urea nitrogen, and serum creatinine levels were tested. Histomorphology was observed by periodic acid-Schiff staining and hematoxylin and eosin staining of the kidney sections. The glomerular basement membrane and autophagosomes of the kidneys were observed using transmission electron microscopy. Nephrin and desmin levels in the glomeruli were tested using immunohistochemistry. The viability of MPC-5 cells was tested using cell counting kit-8 after chloroquine and rapamycin administration in combination with DSI. The in vivo and in vitro protein levels of phosphatidylinositol 3-kinase (PI3K), AKT, phosphorylated AKT (Ser473), mammalian target of rapamycin (mTOR), microtubule-associated protein light chain 3 (LC3), beclin1, cleaved caspase-3, and caspase-3 were detected using western blotting. RESULTS: Our results showed that DSI contained nine main components: caffeic acid, danshensu, lithospermic acid, rosmarinic acid, salvianolic acid A, salvianolic acid B, salvianolic acid C, salvianolic acid D, and 3, 4-Dihydroxybenzaldehyde. In in vivo studies, the NS mice showed renal function and pathological impairment. Podocytes were damaged, with decreased levels of autophagy and apoptosis, accompanied by inhibition of the PI3K/AKT/mTOR signaling. DSI administration resulted in improved renal function and pathology in NS mice, with the activation of autophagy and PI3K/AKT/mTOR signaling in the kidneys. Additionally, podocytes were less damaged and intracellular autophagosomes were markedly increased. In vitro studies have shown that DSI activated MPC-5 autophagy and reduced apoptosis via the PI3K/AKT/mTOR pathway. CONCLUSION: Collectively, this study demonstrated that DSI activated podocyte autophagy and reduced apoptosis via the PI3K/AKT/mTOR signaling, ultimately attenuating NS. Our study clarified the main components of DSI and elucidated its therapeutic effects and potential mechanisms for NS, providing new targets and agents for the clinical treatment of NS.


Asunto(s)
Síndrome Nefrótico , Podocitos , Salvia miltiorrhiza , Animales , Autofagia , Beclina-1/metabolismo , Caspasa 3/metabolismo , Cloroquina/farmacología , Creatinina , Desmina/metabolismo , Desmina/farmacología , Doxorrubicina/farmacología , Eosina Amarillenta-(YS)/metabolismo , Eosina Amarillenta-(YS)/farmacología , Hematoxilina/metabolismo , Hematoxilina/farmacología , Lipopolisacáridos/farmacología , Mamíferos/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Síndrome Nefrótico/inducido químicamente , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/metabolismo , Ácido Peryódico/metabolismo , Ácido Peryódico/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Podocitos/metabolismo , Prednisona/metabolismo , Prednisona/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
8.
BMC Nephrol ; 23(1): 303, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064366

RESUMEN

BACKGROUND: Increasing evidence suggests that immune cell infiltration contributes to the pathogenesis and progression of diabetic nephropathy (DN). We aim to unveil the immune infiltration pattern in the glomerulus of DN and provide potential targets for immunotherapy. METHODS: Infiltrating percentage of 22 types of immune cell in the glomerulus tissues were estimated by the CIBERSORT algorithm based on three transcriptome datasets mined from the GEO database. Differentially expressed genes (DEGs) were identified by the "limma" package. Then immune-related DEGs were identified by intersecting DEGs with immune-related genes (downloaded from Immport database). The protein-protein interactions of Immune-related DEGs were explored using the STRING database and visualized by Cytoscape. The enrichment analyses for KEGG pathways and GO terms were carried out by the gene set enrichment analysis (GSEA) method. RESULTS: 11 types of immune cell were revealed to be significantly altered in the glomerulus tissues of DN (Up: B cells memory, T cells gamma delta, NK cells activated, Macrophages.M1, Macrophages M2, Dendritic cells resting, Mast cells resting; Down: B cells naive, NK cells resting, Mast cells activated, Neutrophils). Several pathways related to immune, autophagy and metabolic process were significantly activated. Moreover, 6 hub genes with a medium to strong correlation with renal function (eGFR) were identified (SERPINA3, LTF, C3, PTGDS, EGF and ALB). CONCLUSION: In the glomerulus of DN, the immune infiltration pattern changed significantly. A complicated and tightly regulated network of immune cells exists in the pathological of DN. The hub genes identified here will facilitate the development of immunotherapy.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Biología Computacional/métodos , Nefropatías Diabéticas/patología , Perfilación de la Expresión Génica/métodos , Humanos , Glomérulos Renales/patología , Transcriptoma
9.
Front Chem ; 10: 961660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034654

RESUMEN

Accurate investigation of adrenal hormone levels plays a vital role in pediatric endocrinology for the detection of steroid-related disorders. This study aims to develop a straightforward, sensitive UHPLC-MS/MS method to quantify 17 endogenous adrenal corticosteroid hormones in human plasma. These hormones are the main ingredients in the synthetic and metabolic pathways of adrenal corticosteroid hormones. Chromatographic separation was achieved on a C18 column before electrospray ionization triple-quadrupole mass spectrometry in multiple reaction monitoring mode with a run time of 7 min. The samples were extracted by liquid-liquid extraction and required no derivatization. Analytical performance was evaluated, including linearity, analytical sensitivity, accuracy, precision, and specificity. Plasma specimens from 32 congenital adrenal hyperplasia (CAH) patients and 30 healthy volunteers were analyzed to further reveal the diagnostic value of multiple steroid hormones in the synthetic and metabolic pathways of adrenal corticosteroid in CAH diagnosis. All hormones were effectively extracted and separated using our method. The method was essentially free from potential interference of isomers or structural analogues. The imprecisions were <10%. The lower limits of quantification varied from 0.05 to 15.0 ng/ml. Good linearity coefficients (r 2 > 0.998) were also obtained for most hormones in the required concentration range, except for 21-deoxycortisol (r 2 = 0.9967) and androstenediol (r 2 = 0.9952). The recoveries for the steroid hormones ranged from 91.7 to 109.8%. We developed the UHPLC-MS/MS method for the simultaneous measurement of steroid hormones. The results showed that measurement of steroid hormones simultaneously could improve the diagnostic efficiency of CAH.

10.
Eur J Pharmacol ; 929: 175136, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35792172

RESUMEN

Activation of inflammation is an important pathogenic factor contributing to the development of chronic kidney disease (CKD). Recent studies manifested the implication of impaired mitophagy mediated NLRP3 inflammasome activation in the progression of CKD. Mitochondria-targeted antioxidant mitoTEMPO showed antioxidant and anti-inflammatory properties in kidney disease. This study aims to investigate the protective mechanism of mitoTEMPO on podocyte injury related to mitophagy and NLRP3 inflammasome. Our results showed that mitoTEMPO obviously ameliorated renal function and podocyte injury in CKD model rats induced by cationic bovine serum albumin (C-BSA). More importantly, mitoTMEPO significantly inhibited NLRP3 inflammasome activation compared with CKD model rats (P < 0.01). In vitro, TNF-α damaged human podocyte cells (HPC) and activated NLRP3 inflammasome, which was rescued by NLRP3 inhibitor and mitoTEMPO. Meanwhile, mitoTEMPO lessened excessive mitochondrial ROS (mtROS) and degressive mitochondrial membrane potential (MMP) in HPC. We also found that mitoTEMPO induced mitophagy in vivo and in vitro. Moreover, silenced Parkin dramatically reserved the inhibitory effect of mitoTEMPO on NLRP3 inflammasome. Taking together, these findings reveal that mitoTEMPO ameliorated podocyte injury by inhibiting NLRP3 inflammasome via PINK1/Parkin pathway-mediated mitophagy. MitoTEMPO may be a new candidate to protect against podocyte injury in CKD.


Asunto(s)
Podocitos , Insuficiencia Renal Crónica , Animales , Antioxidantes/farmacología , Humanos , Inflamasomas , Mitofagia , Proteína con Dominio Pirina 3 de la Familia NLR , Compuestos Organofosforados , Piperidinas , Proteínas Quinasas , Ratas , Especies Reactivas de Oxígeno , Ubiquitina-Proteína Ligasas
11.
Bioengineered ; 13(5): 13956-13969, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35723058

RESUMEN

The abnormal proliferation and inflammatory response of the mesangial cells play a crucial role in the progression of membranous nephropathy (MN). Herein, this study aimed to investigate the therapeutic effect of Salvianolic acid B (SalB) on MN-induced mesangial abnormalities and its underlying mechanisms. MN models were established in cationic bovine serum albumin-induced Sprague-Dawley rats and lipopolysaccharide-induced human mesangial cells (HMCs). Following SalB and microRNA-145-5p antagomir treatment, kidney function was investigated by 24-hours urine protein, serum creatinine, and blood urea nitrogen. Pathological changes of kidney were investigated by Periodic acid Schiff staining. CD68 and IgG were detected by immunofluorescence in glomerulus. Mesangial autophagosomes were observed by transmission electron microscope. MicroRNA-145-5p inhibitor, mimic, LY294002, and SalB were used to treat with HMCs. In kidney and HMCs, IL-1 ß, IL-2, IL-6, TNF-α and microRNA-145-5p was detected by quantitative real-time PCR. Phosphatidylinositol 3-kinase (PI3K), phosphorylated AKT, AKT, beclin1, and microtubule-associated protein light chain 3 (LC3) levels were detected by Western blot. HMCs proliferation and cycle were detected by Cell Counting Kit-8 and flow cytometry. LC3 were detected by LC3-dual-fluorescent adenovirus in HMCs. Our results showed that SalB significantly ameliorated kidney function and pathological changes. Furthermore, it significantly alleviated proliferation, inflammation and activated autophagy in mesangial cells. Moreover, microRNA-145-5p antagomir accentuated MN while microRNA-145-5p inhibitor and LY294002 encouraged proliferation and inflammation through PI3K/AKT pathway in HMCs. Collectively, our study demonstrated that SalB activated renal autophagy to reduce cell proliferation and inflammation of MN, which was mediated by microRNA-145-5p to inhibit PI3K/AKT pathway, and ultimately attenuated MN.


Asunto(s)
Glomerulonefritis Membranosa , MicroARNs , Animales , Antagomirs , Autofagia , Benzofuranos , Glomerulonefritis Membranosa/tratamiento farmacológico , Glomerulonefritis Membranosa/genética , Inflamación , Riñón/metabolismo , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
12.
Front Pharmacol ; 13: 860383, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401224

RESUMEN

Objective: The present study aims to provide evidence on the potential protective role of Salvia miltiorrhiza Bunge (Danshen) and its bioactive compound Tanshinone IIA (TanIIA) in AKI and to reveal the specific regulatory function of PXR/NF-κB signaling in AKI-induced renal inflammation. Methods: A network pharmacological analysis was used to study target genes and regulatory networks in the treatment of Salvia miltiorrhiza on AKI. Further experiments with in vivo AKI mouse model and in vitro studies were applied to investigate the renal protective effect of TanIIA in AKI. The mechanisms of TanIIA regulating PXR/NF-κB signaling in renal inflammation were also studied. Results: Network pharmacology had suggested the nuclear receptor family as new therapeutic targets of Salvia miltiorrhiza in AKI treatment. The in vivo studies had demonstrated that TanIIA improved renal function and inflammation by reducing necrosis and promoting the proliferation of tubular epithelial cells. Improved renal arterial perfusion in AKI mice with TanIIA treatment was also recorded by ultrasonography. In vitro studies had shown that TanIIA ameliorated renal inflammation by activating the PXR while inhibiting PXR-mediated NF-κB signaling. The results had suggested a role of PXR activation against AKI-induced renal inflammation. Conclusion: Salvia miltiorrhiza Bunge (Danshen) may protect the kidneys against AKI by regulating nuclear receptors. TanIIA improved cell necrosis proliferation and reduced renal inflammation by upregulating the expression of the PXR and inhibiting NF-κB signaling in a PXR-dependent manner. The PXR may be a potential therapeutic target for AKI treatment.

13.
Biochem Biophys Res Commun ; 600: 14-21, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35182970

RESUMEN

As the most known therapeutic component of bear bile acids, ursodeoxycholic acid (UDCA) is an FDA-approved drug for the treatment of primary biliary cirrhosis (PBC), the dissolution of cholesterol gallstones. UDCA produces many beneficial effects on metabolism and immune responses via its interaction with the membrane G protein-coupled bile acid receptor (GPBAR); however, how UDCA interacts with GPBAR and its selective cellular effects remain elusive. In this study, we delineated the interaction of UDCA with GPBAR and activation mechanism of GPBAR by scattered alanine scanning and molecular docking. Our results indicated that transmembrane helix 2 (TM2), TM3, TM5 and TM6 of GPBAR contribute to the interaction of UDCA in GPBAR binding pocket. Moreover, we predicted that the engagement of the 3-OH of UDCA with phenolic oxygen of Y2406.51 in GPBAR plays a key role in GPBAR activation. Unexpectedly, in addition to the well-known roles of intracellular loop2 (ICL2) residues, we identified that ICL3 residues play an important role in G protein coupling to GPBAR in response to UDCA binding. Our study provides a preliminary molecular mechanism of how GPBAR recognizes UDCA and subsequent activation and G protein interaction, which may facilitate the development of new bile acid derivatives as therapeutics.


Asunto(s)
Ácidos y Sales Biliares , Ácido Ursodesoxicólico , Alanina , Proteínas de Unión al GTP/metabolismo , Simulación del Acoplamiento Molecular , Receptores Acoplados a Proteínas G/metabolismo , Ácido Ursodesoxicólico/uso terapéutico
14.
Nature ; 600(7887): 164-169, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34789875

RESUMEN

In the clades of animals that diverged from the bony fish, a group of Mas-related G-protein-coupled receptors (MRGPRs) evolved that have an active role in itch and allergic signals1,2. As an MRGPR, MRGPRX2 is known to sense basic secretagogues (agents that promote secretion) and is involved in itch signals and eliciting pseudoallergic reactions3-6. MRGPRX2 has been targeted by drug development efforts to prevent the side effects induced by certain drugs or to treat allergic diseases. Here we report a set of cryo-electron microscopy structures of the MRGPRX2-Gi1 trimer in complex with polycationic compound 48/80 or with inflammatory peptides. The structures of the MRGPRX2-Gi1 complex exhibited shallow, solvent-exposed ligand-binding pockets. We identified key common structural features of MRGPRX2 and describe a consensus motif for peptidic allergens. Beneath the ligand-binding pocket, the unusual kink formation at transmembrane domain 6 (TM6) and the replacement of the general toggle switch from Trp6.48 to Gly6.48 (superscript annotations as per Ballesteros-Weinstein nomenclature) suggest a distinct activation process. We characterized the interfaces of MRGPRX2 and the Gi trimer, and mapped the residues associated with key single-nucleotide polymorphisms on both the ligand and G-protein interfaces of MRGPRX2. Collectively, our results provide a structural basis for the sensing of cationic allergens by MRGPRX2, potentially facilitating the rational design of therapies to prevent unwanted pseudoallergic reactions.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Prurito/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/química , Receptores de Neuropéptido/metabolismo , Alérgenos/inmunología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Secuencia de Consenso , Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Modelos Moleculares , Proteínas del Tejido Nervioso/inmunología , Proteínas del Tejido Nervioso/ultraestructura , Receptores Acoplados a Proteínas G/inmunología , Receptores Acoplados a Proteínas G/ultraestructura , Receptores de Neuropéptido/inmunología , Receptores de Neuropéptido/ultraestructura
15.
Eur J Pharmacol ; 902: 174121, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33901462

RESUMEN

Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes and an important cause of end-stage renal disease. Previous studies have shown that the damage to podocyte autophagy is related to the pathogenesis of DKD, and this damage is closely mediated by the Janus kinase (JAK)/signal transductors and the transcription (STAT) signaling pathway. Here, the underlying molecular mechanism of the JAK/STAT signaling pathway regulating podocyte autophagy was investigated. In the present study, compared to controls, DKD mice showed glomerular hypertrophy, increased kidney weight/weight ratio, and increased urinary protein levels, as well as decreased desmin and synaptopodin expression. Meanwhile, levels of triglyceride, total cholesterol, reduced glutathione, and malondialdehyde were also increased in the serum of DKD mice. Further, a lower number of autophagosomes, reduced expression of MAP1LC3 (LC3) in glomeruli, and increased expression of JAK/STAT pathway-related proteins, namely JAK1, JAK2, STAT1, STAT3, STAT5, and STAT6, were observed in DKD mice. In the in vitro experiments, we observed impaired autophagy, enhanced apoptosis, and activated JAK/STAT pathway in podocytes under high glucose conditions. Studies using ruxolitinib inhibitors have showed that suppression of the JAK/STAT pathway in podocytes subjected to high glucose could increase autophagic flux and autophagy-related protein expression. Taken together, the present study demonstrates that high glucose inhibits autophagy by activating the JAK/STAT pathway in mice and podocytes, thereby preventing the efficient removal of damaged proteins and organelles from the body to prevent apoptosis, and ultimately aggravating the progression of podocyte injury and DKD.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Quinasas Janus/metabolismo , Podocitos/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Línea Celular Transformada , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/fisiopatología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Progresión de la Enfermedad , Glucosa/toxicidad , Masculino , Ratones Endogámicos C57BL , Podocitos/patología
16.
Life Sci ; 271: 119186, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33577852

RESUMEN

Myocardial fibrosis (MF) is a reactive remodeling process in response to myocardial injury. It is mainly manifested by the proliferation of cardiac muscle fibroblasts and secreting extracellular matrix (ECM) proteins to replace damaged tissue. However, the excessive production and deposition of extracellular matrix, and the rising proportion of type I and type III collagen lead to pathological fibrotic remodeling, thereby facilitating the development of cardiac dysfunction and eventually causing heart failure with heightened mortality. Currently, the molecular mechanisms of MF are still not fully understood. With the development of epigenetics, it is found that epigenetics controls the transcription of pro-fibrotic genes in MF by DNA methylation, histone modification and noncoding RNAs. In this review, we summarize and discuss the research progress of the mechanisms underlying MF from the perspective of epigenetics, including the newest m6A modification and crosstalk between different epigenetics in MF. We also offer a succinct overview of promising molecules targeting epigenetic regulators, which may provide novel therapeutic strategies against MF.


Asunto(s)
Cardiomiopatías/genética , Cardiomiopatías/patología , Epigénesis Genética/genética , Miocardio/patología , Remodelación Ventricular/genética , Animales , Cardiomiopatías/terapia , Metilación de ADN/genética , Fibrosis/genética , Fibrosis/patología , Fibrosis/terapia , Humanos
17.
Front Pharmacol ; 12: 777670, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35757387

RESUMEN

Chronic glomerulonephritis (CGN) is one of the major causes of end-stage kidney disease. Zhen-wu-tang (ZWT), as a famous Chinese herbal prescription, is widely used in China for CGN therapy in clinic. However, the mechanism of ZWT in CGN has not been fully understood. The present study explored the therapeutic effect and the underlying mechanism of ZWT on mitochondrial function in cationic bovine serum albumin (C-BSA)-induced CGN model rats and tumor necrosis factor (TNF-α)-damaged mouse podocytes. The renal functions were measured by serum creatinine (Scr) and blood urea nitrogen (BUN). Renal pathological changes and ultrastructure of kidney tissues were evaluated by periodic acid-Schiff (PAS) staining and transmission electron microscopy. The levels of antioxidases, including mitochondrial catalase (CAT), superoxide dismutase 2 (SOD2), and peroxiredoxin 3 (PRDX3), in CGN rats were examined by real-time PCR. The mitochondrial functions of podocytes were measured by ATP concentration, mitochondrial membrane potential (MMP), and mitochondrial ROS (mtROS). For mitophagy level detection, the expressions of mitophagy-related proteins, including LC3, p62, heat shock protein 60 (HSP60), and translocase of outer mitochondrial membrane 20 (TOMM20), were measured by Western blot, as the colocation of LC3 and mitochondrial marker COX IV were evaluated by immunofluorescence. Our results manifested that ZWT ameliorated CGN model rats by a remarkable decrease in Scr and BUN, inhibition of mesangial matrix proliferation, protection against foot processes fusion, and basement membrane thickening. More importantly, ZWT protected against mitochondrial dysfunction by increasing the expressions of CAT, SOD2, and PRDX3 in CGN model rats, increased ATP content and MMP in podocytes, and decreased excessive mtROS. Furthermore, ZWT induced mitophagy in CGN through increasing the expression of LC3, and decreasing p62, HSP60, TOMM20, and ZWT also enhanced the colocation of LC3 to the mitochondria. We found that ZWT inhibited the PI3K/AKT/mTOR pathway, which could be disturbed by PI3K inhibitor LY294002 and agonist insulin-like growth factor 1. Moreover, ZWT reversed the inhibition of the AMPK pathway in CGN. Overall, ZWT ameliorated renal mitochondrial dysfunction probably by inducing mitophagy via the PI3K/AKT/mTOR and AMPK pathways.

18.
Front Pharmacol ; 11: 541426, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013384

RESUMEN

Acute kidney injury (AKI) is a serious disease characterized by a rapid decline in kidney function. Oxidative stress is the primary pathogenesis of AKI. Salvianolic acid B (SalB), a water-soluble compound extracted from Salvia miltiorrhiza, possesses a potent antioxidant activity. Here, we investigated the protective effect of SalB against renal ischemia-reperfusion injury (I/R) in mice. Briefly, by analyzing renal function, oxidative stress markers and inflammatory biomarkers, we found that SalB could improve kidney damage, reduce oxidative stress and inflammatory factor levels. Interestingly, the expression of the NLR family pyrin domain-containing 3 (NLRP3), caspase-1, pyroptosis related proteins gasdermin D (GSDMD) and interleukin (IL)-1ß, which were significantly upregulated in the kidney tissues of I/R group, was effectively reversed by SalB. Meanwhile, renal tubular epithelial cells hypoxia and reoxygenation model was used to explore pyroptosis of caspase-1-dependent. Further mechanism study showed that the SalB pretreatment could promote the increase of nuclear factor erythroid-2 related factor 2 (Nrf2) nuclear accumulation, which significantly suppressed oxidative stress, proinflammatory cytokines, NLRP3 inflammasome activation and pyroptosis. These results indicate that SalB can inhibit caspase-1/GSDMD-mediated pyroptosis by activating Nrf2/NLRP3 signaling pathway, resulting in alleviating I/R injury in mice.

19.
Front Pharmacol ; 11: 1080, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765277

RESUMEN

Immunoglobulin A nephropathy (IgAN) is one of the most frequent kinds of primary glomerulonephritis characterized by IgA immune complexes deposition and glomerular proliferation. Zhen-wu-tang (ZWT), a well-known traditional Chinese formula has been reported to ameliorate various kidney diseases. However, its pharmacological mechanism remains unclear. Exosomes have been described in diverse renal diseases by mediating cellular communication but rarely in the IgAN. The purpose of the present study is to explore whether the underlying mechanisms of the effect of ZWT on IgAN is correlated to exosomes. Our results demonstrated that in human renal tubular epithelial cells (HK-2) stimulated by lipopolysaccharide, exosomes are obviously released after ZWT-containing serum treatment especially with 10% ZWT. In addition, once released, HK-2-derived exosomes were uptaked by human mesangial cells (HMC), which impeded the activation of NF-κB/NLRP3 signaling pathway to exert anti-inflammatory effects in a lipopolysaccharide induced proliferation model. Moreover, IgAN rat model was established by bovine serum albumin, CCL4 mixed solution and LPS. We found that 10% ZWT could significantly promote the release of exosomes from HK-2 and inhibit HMC proliferation to improve inflammation. Thus HK-2-derived exosomes treated with 10% ZWT (ZWT-EXO) were administered to the rats by tail vein injection. Our results showed that ZWT-EXO decreased the levels of 24 h proteinuria, urinary erythrocyte, IgA deposition in glomerulus and renal pathological injury which ameliorated the kidney damage. In addition, ZWT was able to dramatically promote secretion of exosomes in renal tissues while blocked NF-κB nuclear translocation as well as activation of NLRP3 inflammasome, leading to the inhibition of IL-1ß and caspase-1. In conclusion, our study reveal that ZWT has protective effects on IgAN by regulating exosomes secretion to inhibit the activation of NF-κB/NLRP3 pathway, thereby attenuating the renal dysfunction. These findings may provide a new therapeutic target for the treatment of IgAN.

20.
Phytother Res ; 34(12): 3236-3248, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32726508

RESUMEN

Astragaloside IV(AS-IV), a saponin purified from Astragalus membranaceus (Fisch.) Bge.var.mongholicus (Bge.) Hsiao, has been widely used in traditional Chinese medicine. However, the underlying mechanisms in treating chronic glomerular nephritis (CGN) have not been fully understood. The aim of the present study was to evaluate the potential mechanism of AS-IV on CGN. CGN rats were administrated with AS-IV at 10 mg·kg-1 ·d-1 (ASL) and 20 mg·kg-1 ·d-1 (ASH). Twenty four hour proteinuria, blood urea nitrogen (BUN), and serum creatinine (SCr) were detected. Hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) staining were performed to evaluate the kidney lesion. Transmission electron microscope and GFP-RFP-LC3 transfection assay were used to monitor the effect of AS-IV on autophagy. IL-6 and IL-1ß were detected. The expression of CyclinD1, PI3K/AKT/AS160 pathway and autophagy related proteins were detected by Western Blot. The results demonstrated that AS-IV improved kidney function, ameliorated kidney lesion, and diminished inflammatory in CGN rats. Further, both in vivo and vitro study demonstrated that AS-IV inhibited the proliferation of mesangial cells. AS-IV further displayed a remarkable effect on inhibiting the activation of PI3K/AKT/AS160 pathway and improved the activation of autophagy in vivo and vitro. These results suggested that AS-IV is a potential therapeutic agent for CGN and merits further investigation.


Asunto(s)
Autofagia/efectos de los fármacos , Glomerulonefritis/prevención & control , Insuficiencia Renal Crónica/prevención & control , Saponinas/farmacología , Triterpenos/farmacología , Animales , Astragalus propinquus/química , Células Cultivadas , Citoprotección/efectos de los fármacos , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/patología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA