RESUMEN
[This corrects the article DOI: 10.7150/ijbs.54014.].
RESUMEN
Intensive aquaculture in high-density hybrid snakehead [Channa maculata (â) × Channa argus (â)] fishponds can lead to toxic conditions for fish. This study investigated nitrogen migration and transformation in these fishponds during different cultivation periods. Using qPCR technology, we analyzed the abundance variation of nitrogen-cycling microorganisms in water and sediment to reveal the nitrogen metabolism characteristics of hybrid snakehead fishponds. The results showed that fish biomass significantly impacts suspended particulate matter (SPM) flux. At the sediment-water interface, inorganic nitrogen fluxes showed predominant NO3--N absorption by sediments and NH4+-N and NO2--N release, especially in later cultivation stages. Sediments were rich in nirS and AMX 16S rRNA genes (ranging from 4.04 × 109 to 1.01 × 1010 and 1.19 × 108 to 2.62 × 108 copies/g, respectively) with nirS-type denitrifiers potentially dominating the denitrification process. Ammonia-oxidizing bacteria (AOB) were found to dominate the ammonia oxidation process over ammonia-oxidizing archaea (AOA) in both water and sediment. Redundancy analysis revealed a positive correlation between SPM flux, Chlorophyll a (Chl-a), and denitrification genes in the water, and between nitrogen-cycling genes and NH4+/NO2- fluxes at the interface. These findings provide a scientific basis for nitrogen control in hybrid snakehead fishponds.
RESUMEN
BACKGROUND: Heavy metal contamination has been a severe worldwide environmental issue. For industrial pollutions, heavy metals rarely exist as singular entities. Hence, researches have increasingly focused on the detrimental effect of mixed heavy metal pollution. Genome analysis of Lampropedia strains predicted a repertoire of heavy metal resistance genes. However, we are still lack of experimental evidence regarding to heavy metal resistance of Lampropedia, and their potential in mixed heavy metal removal remain elusive. RESULTS: In this study, a Lampropedia aestuarii strain GYF-1 was isolated from soil samples near steel factory. Heavy metal tolerance assay indicated L. aestuarii GYF-1 possessed minimal inhibition values of 2 mM, 10 mM, 6 mM, 4 mM, 6 mM, 0.8 mM, and 4 mM for CdCl2, K2CrO4, CuCl2, NiCl2, Pb(CH3COO)2, ZnSO4, and FeCl2, respectively. The biosorption assay demonstrated its potential in soil remediation from mixed heavy metal pollution. Next the draft genome of L. aestuarii GYF-1 was obtained and annotated, which revealed strain GYF-1 are abundant in heavy metal resistance genes. Further evaluations on differential gene expressions suggested adaptive mechanisms including increased lipopolysaccharides level and enhanced biofilm formation. CONCLUSION: In this study, we demonstrated a newly isolated L. aestuarii GYF-1 exhibited mixed heavy metal resistance, which proven its capability of being a potential candidate strain for industrial biosorption application. Further genome analysis and differential gene expression assay suggest enhanced LPS and biofilm formation contributed to the adaptation of mixed heavy metals.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Suelo , Contaminantes del Suelo/análisisRESUMEN
BACKGROUND: The aim of this study was to investigate the effect of isopsoralen on osteogenic differentiation of human jawbone marrow mesenchymal cells and its possible mechanism. METHOD: The cytotoxicity and proliferation of cells were measured by a cell counting kit 8. Alkaline phosphatase activity analysis was then used to determine the optimal concentration of isopsoralen to promote the differentiation. Western blot, qRT-PCR and Alizarin Red S staining were used to evaluate the role of Notch signaling pathway in isopsoralen-induced osteogenic differentiation. This study also investigated the anti-osteoporotic effects of ISO using in vivo osteoporosis models. RESULTS: Our results showed that 1 × 10-6 mol / L isopsoralen can effectively promote the proliferation and osteogenic differentiation of cells. Moreover, we found that activation of notch signaling pathway inhibited isopsoralen-induced osteogenesis and inhibition of Notch signal promoted the differentiation of osteoblasts induced by isopsoralen. In vivo experiments revealed that ISO significantly inhibited OVX-induced bone mineral density loss and restored the impaired bone structural properties in osteoporosis model mice. CONCLUSION: Our findings demonstrated that isopsoralen induced osteogenic differentiation by inhibiting Notch signaling and it might be a potential therapeutic agent for treating or preventing osteoporosis.
Asunto(s)
Células Madre Mesenquimatosas , Osteoporosis , Humanos , Ratones , Animales , Osteogénesis , Médula Ósea/metabolismo , Células Cultivadas , Diferenciación Celular , Transducción de Señal , Osteoporosis/tratamiento farmacológico , Células de la Médula Ósea/metabolismoRESUMEN
BACKGROUND: Drug resistance limits the treatment effect of cisplatin-based chemotherapy in head and neck squamous cell carcinoma (HNSCC), and the underlying mechanism is not fully understood. The aim of this study was to explore the cause of cisplatin resistance in HNSCC. METHODS: We performed survival and gene set variation analyses based on HNSCC cohorts and identified the critical role of tumor necrosis factor alpha-induced protein 2 (TNFAIP2) in cisplatin-based chemotherapy resistance. Half-maximal inhibitory concentration (IC50) examination, colony formation assays and flow cytometry assays were conducted to examine the role of TNFAIP2 in vitro, while xenograft models in nude mice and 4-nitroquinoline N-oxide (4NQO)-induced HNSCC models in C57BL/6 mice were adopted to verify the effect of TNFAIP2 in vivo. Gene set enrichment analysis (GSEA) and coimmunoprecipitation coupled with mass spectrometry (Co-IP/MS) were performed to determine the mechanism by which TNFAIP2 promotes cisplatin resistance. RESULTS: High expression of TNFAIP2 is associated with a poor prognosis, cisplatin resistance, and low reactive oxygen species (ROS) levels in HNSCC. Specifically, it protects cancer cells from cisplatin-induced apoptosis by inhibiting ROS-mediated c-JUN N-terminal kinase (JNK) phosphorylation. Mechanistically, the DLG motif contained in TNFAIP2 competes with nuclear factor-erythroid 2-related factor 2 (NRF2) by directly binding to the Kelch domain of Kelch-like ECH-associated protein 1 (KEAP1), which prevents NRF2 from undergoing ubiquitin proteasome-mediated degradation. This results in the accumulation of NRF2 and confers cisplatin resistance. Positive correlations between TNFAIP2 protein levels and NRF2 as well as its downstream target genes were validated in HNSCC specimens. Moreover, the small interfering RNA (siRNA) targeting TNFAIP2 significantly enhanced the cisplatin treatment effect in a 4NQO-induced HNSCC mouse model. CONCLUSIONS: Our results reveal the antioxidant and cisplatin resistance-regulating roles of the TNFAIP2/KEAP1/NRF2/JNK axis in HNSCC, suggesting that TNFAIP2 might be a potential target in improving the cisplatin treatment effect, particularly for patients with cisplatin resistance.
Asunto(s)
Cisplatino , Neoplasias de Cabeza y Cuello , Animales , Ratones , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Cisplatino/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Citocinas/metabolismoRESUMEN
We propose a new fault diagnosis model for rolling bearings based on a hybrid kernel support vector machine (SVM) and Bayesian optimization (BO). The model uses discrete Fourier transform (DFT) to extract fifteen features from vibration signals in the time and frequency domains of four bearing failure forms, which addresses the issue of ambiguous fault identification caused by their nonlinearity and nonstationarity. The extracted feature vectors are then divided into training and test sets as SVM inputs for fault diagnosis. To optimize the SVM, we construct a hybrid kernel SVM using a polynomial kernel function and radial basis kernel function. BO is used to optimize the extreme values of the objective function and determine their weight coefficients. We create an objective function for the Gaussian regression process of BO using training and test data as inputs, respectively. The optimized parameters are used to rebuild the SVM, which is then trained for network classification prediction. We tested the proposed diagnostic model using the bearing dataset of the Case Western Reserve University. The verification results show that the fault diagnosis accuracy is improved from 85% to 100% compared with the direct input of vibration signal into the SVM, and the effect is significant. Compared with other diagnostic models, our Bayesian-optimized hybrid kernel SVM model has the highest accuracy. In laboratory verification, we took sixty sets of sample values for each of the four failure forms measured in the experiment, and the verification process was repeated. The experimental results showed that the accuracy of the Bayesian-optimized hybrid kernel SVM reached 100%, and the accuracy of five replicates reached 96.7%. These results demonstrate the feasibility and superiority of our proposed method for fault diagnosis in rolling bearings.
Asunto(s)
Laboratorios , Máquina de Vectores de Soporte , Humanos , Teorema de Bayes , Distribución Normal , VibraciónRESUMEN
Mitochondrial dysfunction is associated with ototoxicity, which is caused by external factors. Mitophagy plays a key role in maintaining mitochondrial homeostasis and function and is regulated by a series of key mitophagy regulatory proteins and signaling pathways. The results of ototoxicity models indicate the importance of this process in the etiology of ototoxicity. A number of recent investigations of the control of cell fate by mitophagy have enhanced our understanding of the mechanisms by which mitophagy regulates ototoxicity and other hearing-related diseases, providing opportunities for targeting mitochondria to treat ototoxicity.
RESUMEN
Background: Lack of adequate objectivity and universality, available models are still difficult to be applied to clinical practice in predicting occult cervical metastasis of early oral squamous cell carcinoma (OSCC). Taking abnormal metabolic state into consideration, the current model is helpful to distinguish those patients with or without occult cervical metastasis. Methods: This study retrospectively analyzed 330 OSCC patients initially diagnosed cT1-2N0M0 stage and received neck dissection from January 2020 to July 2022. The occult cervical metastasis was identified by pathological examination.. After screening independent risk factors using logistic regression, patients were divided into training and validation cohorts at the ratio of 2:1 randomly, and a novel diagnostic model was constructed. Performances of this model were evaluated by the area under the curve (AUC), calibrating curve, decision curve analysis (DCA) and clinical impact curve (CIC). Results: Of the 330 included patients {age mean [standard deviation (SD)], 61.24 (12.99) years; 202 (61.2%) males}, 49 (14.8%) had occult nodal metastasis. Five variables, including body mass index (BMI) [high odds ratio (OR): 1.132; 95% confidence interval (CI): 1.019-1.258, P=0.021], primary tumor site (tongue & floor of mouth (TF) OR: 3.756; 95% CI: 1.295-10.898, P=0.015), depth of invasion (DOI) (5-10 mm OR: 2.973; 95% CI: 1.266-6.981; P=0.012), pathological differentiation (Poor differentiation OR: 2.65; 95% CI: 1.341-5.239; P=0.005), and diabetes (OR: 3.123; 95% CI: 1.23-7.929; P=0.017) were screened to establish the predictive model. In training cohort (n=220), this model achieved an AUC of 0.814 and had a sensitivity of 78.1% and specificity of 70.2%. Calibration plots showed favorable consistency between the prediction of the model and actual observations (Hosmer-Lemeshow value >0.05). Decision curve analysis (DCA) and clinical impact curve (CIC) showed the model was clinically useful and had better discriminative ability under the threshold probability of 0.5. Above evaluations were verified in the validation cohort (n=110). Compared to previous reported models, the concordance index (C-index), net reclassification index (NRI), and integrated discrimination improvement (IDI) values were superior in both training and validation cohorts (P<0.05). Conclusions: This constructed model might have reference value for clinicians in making neck management decisions of early OSCC patients.
RESUMEN
Ultrahigh Ni-rich quaternary layered oxides LiNi1-x-y-zCoxMnyAlzO2 (1 - x - y - z ≥ 0.9) are regarded as some of the most promising cathode candidates for lithium-ion batteries (LIBs) because of their high energy density and low cost. However, poor rate capacity and cycling performance severely limit their further commercial applications. Herein, an in situ coating strategy is developed to construct a uniform LiAlO2 layer. The NH4HCO3 solution is added to a NaAlO2 solution to form a weak alkaline condition, which can reduce the hydrolysis rate of NaAlO2, thus enabling uniform deposition of Al(OH)3 on the surface of a Ni0.9Co0.07Mn0.01Al0.02(OH)2 (NCMA) precursor. The LiAlO2-coated samples show enhanced cycling stability and rate capacity. The capacity retention of NCMA increases from 70.7% to 88.3% after 100 cycles at 1 C with an optimized LiAlO2 coating amount of 3 wt %. Moreover, the 3 wt % LiAlO2-coated sample also delivers a better rate capacity of 162 mAh g-1 at 5 C, while that of an uncoated sample is only 144 mAh g-1. Such a large improvement of the electrochemical performance should be attributed to the fact that a uniform LiAlO2 coating relieves harmful interfacial parasitic reactions and stabilizes the interface structure. Therefore, this in situ coating approach is a viable idea for the design of higher-energy-density cathode materials.
RESUMEN
A rolling bearing fault diagnosis method based on whale gray wolf optimization algorithm-variational mode decomposition-support vector machine (WGWOA-VMD-SVM) was proposed to solve the unclear fault characterization of rolling bearing vibration signal due to its nonlinear and nonstationary characteristics. A whale gray wolf optimization algorithm (WGWOA) was proposed by combining whale optimization algorithm (WOA) and gray wolf optimization (GWO), and the rolling bearing signal was decomposed by using variational mode decomposition (VMD). Each eigenvalue was extracted as eigenvector after VMD, and the training and test sets of the fault diagnosis model were divided accordingly. The support vector machine (SVM) was used as the fault diagnosis model and optimized by using WGWOA. The validity of this method was verified by two cases of Case Western Reserve University bearing data set and laboratory test. The test results show that in the bearing data set of Case Western Reserve University, compared with the existing VMD-SVM method, the fault diagnosis accuracy rate of the WGWOA-VMD-SVM method in five repeated tests reaches 100.00%, which preliminarily verifies the feasibility of this algorithm. In the laboratory test case, the diagnostic effect of the proposed fault diagnosis method is compared with backpropagation neural network, SVM, VMD-SVM, WOA-VMD-SVM, GWO-VMD-SVM, and WGWOA-VMD-SVM. Test results show that the accuracy rate of WGWOA-VMD-SVM fault diagnosis is the highest, the accuracy rate of a single test reaches 100.00%, and the accuracy rate of five repeated tests reaches 99.75%, which is the highest compared with the above six methods. WGWOA plays a good optimization role in optimizing VMD and SVM. The signal decomposed by VMD is optimized by using the WGWOA algorithm without mode overlap. WGWOA has the better convergence performance than WOA and GWO, which further verifies its superiority among the compared methods. The research results can provide an effective improvement method for the existing rolling bearing fault diagnosis technology.
Asunto(s)
Algoritmos , Máquina de Vectores de Soporte , Humanos , Redes Neurales de la Computación , VibraciónRESUMEN
BACKGROUND: Previous studies have suggested an important role for N6-methyladenosine (m6A) modification in the proliferation of glioma cells. N6, 2'-O-dimethyladenosine (m6Am) is another methylated form affecting the fate and function of most RNA. PCIF1 has recently been identified as the sole m6Am methyltransferase in mammalian mRNA. However, it remains unknown about the role of PCIF1 in the growth and survival of glioma cells. METHODS: We constructed glioma cell lines that stably downregulated/upregulated PCIF1, established intracranial xenograft models using these cell lines, and employed the following methods for investigations: CCK-8, EdU, colony formation, flow cytometry, qRT-PCR, Western blot, and immunohistochemistry. FINDINGS: Downregulating PCIF1 promoted glioma cell proliferation, while overexpressing PCIF1 showed the opposite effects. Overexpression of PCIF1 blocked cell cycle progression and induced apoptosis in glioma cells, which was further confirmed by alterations in the expression of cell checkpoint proteins and apoptotic markers. Interestingly, disruption of PCIF1 methyltransferase activity slightly reversed the effect of PCIF1 overexpression on cell proliferation, but had no significant reversal effects on cell cycle progression or apoptosis. Knockdown of PCIF1 promoted the growth of gliomas, while overexpressing PCIF1 inhibited tumor growth and prolonged the survival time of tumor-bearing mice. In addition, the mRNA and protein levels of PCIF1 were gradually decreased with the increase of WHO grade in glioma tissues, but there was no significant correlation with patient survival. INTERPRETATION: These results indicated that PCIF1 played a suppressing role in glioma growth and survival, which may not entirely depend on its methyltransferase activity.
Asunto(s)
Neoplasias Encefálicas , Glioma , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Glioma/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Proteínas Nucleares/metabolismo , ARN Mensajero/genética , Sincalida/metabolismoRESUMEN
Urinary tract infections (UTI) are recognized as one of the most common infectious diseases worldwide, and uropathogenic Escherichia coli (UPEC) is the main causative agent of UTI. Dendrobium officinale polysaccharides (DOPs), the main effective ingredient in Dendrobium officinale, have been reported to possess an anti-inflammatory role. Whether DOPs can attenuate the inflammatory injury (pyroptosis) induced by UPEC remains unknown. The present study aimed to assess the protective effect and potential mechanism of DOPs in UPEC-induced pyroptosis. Cell viability of THP-1 differentiated macrophage cells with DOPs was determined using MTT assay. Pyroptosis by UPEC in macrophage cells with or not DOPs pre-treatment was evaluated with flow cytometry analysis, lactate dehydrogenase (LDH) assay, and proinflammatory cytokines secretion. Expression level of key proteins in the NLRP3/Caspase-1/GSDMD pyroptotic pathway was analyzed with western blot. Furthermore the effect of DOPs on ROS activation was investigated. Results indicated that DOPs attenuated UPEC-induced cell damage in macrophage cells, inhibited the activation of NLRP3 mediated inflammasome, subsequently decreased induction and activation of caspase-1/GSDMD, and reduced the secretion of pro-inflammatory cytokine (IL-1ß et al.). Moreover, pretreatment with DOPs significantly reduces ROS production, an important/putative pyroptosis stimulus signal. These results suggested that DOPs successfully mitigate UPEC-promoted pyroptosis in macrophage cells. The protective effects of DOPs are associated with the inhibition of the NLRP3/Caspase-1/GSDMD pathway and ROS signal activation.
Asunto(s)
Dendrobium , Macrófagos , Polisacáridos , Piroptosis , Escherichia coli Uropatógena , Caspasa 1/metabolismo , Dendrobium/química , Humanos , Inflamasomas/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Polisacáridos/metabolismo , Polisacáridos/farmacología , Piroptosis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/patogenicidadRESUMEN
Semaphorin 3A (Sema3A) has been recognized as a crucial regulator of morphogenesis and homeostasis over a wide range of organ systems. However, its function in cutaneous wound healing is poorly understood. In our study, we demonstrated that Sema3A adenovirus plasmids transfection limited keratinocyte proliferation and decreased migrative capacity as assessed by in vitro wound healing assay. Sema3A transduction inhibited TGF-ß1-mediated keratinocyte migration and EMT process. Besides, we applied mice with K14-Cre-mediated deletion of Sema3A and found that Sema3A depletion postponed wound closure with decreased re-epithelialization and matrix growth. Contrary to the results obtained with full-length Sema3A plasmids transfection, increased keratinocyte migration with recombinant Sema3A proteins resulted in quicker closure of the wounding area after a scratch. Further, exogenously applied recombinant Sema3A worked with EGF to maintain the activation of EGFR by interacting with NRP1 and thereby regulated the internalization of the EGFR-NRP1 complex. Taken together, these results indicated a paradoxical role of autonomous and non-autonomous Sema3A expression during wound healing. Combined administration of recombinant EGF and Sema3A proteins could accelerate the process of wound repair, thus providing promising treatment prospects in the future.
Asunto(s)
Semaforina-3A , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Epidérmico , Receptores ErbB , Ratones , Semaforina-3A/genética , Semaforina-3A/metabolismo , Semaforina-3A/farmacología , Cicatrización de HeridasRESUMEN
Background: Oral squamous cell carcinoma (OSCC) is one of the most prevalent malignancies worldwide. More recently, the administration of immune checkpoint inhibitors has opened up more possibilities for cancer treatment. Methods: We utilized a weighted gene co-expression network and the single sample gene set enrichment analysis (ssGSEA) algorithm in the TCGA database and identified a module highly correlated with regulatory T cell (Treg) abundance in OSCC. Subsequently, we verified the results by tissue microarrays and utilized immunohistochemical staining (IHC) to test the relationship between the expression level and clinicopathological staging. CCK-8, transwell, and wound healing assays were utilized to detect the functions of OSCC cells. Results: LCK, IL10RA, and TNFRSF1B were selected as biomarkers related to regulatory T cell infiltration. IHC staining showed significantly increased expression of LCK, IL10RA or TNFRSF1B in OSCC patients, and the expression levels were associated with tumor stage, lymph node metastasis, pathological stage, clinical status and the overall survival. In vitro experiments showed that LCK, IL10RA or TNFRSF1B knockdown efficiently impaired the proliferative, migrative, and invasive capacity in OSCC cell lines. Conclusion: We performed a series of bioinformatics analyses in OSCC and identified three oncogenic indicators: LCK, IL10RA, TNFRSF1B. These findings uncovered the potential prognostic values of hub genes, thus laying foundations for in-depth research in OSCC.
RESUMEN
OBJECTIVE: In the present study, we intend to assess the function of Sema3A in osteointegration of titanium implants both in vivo and in vitro. MATERIAL AND METHODS: Briefly, Sema3A was transfected in HBMSCs cells to detect its effect on osteogenesis. Subsequently, an in vivo rabbit model was established. Eighteen female rabbits were randomly assigned into three groups (n=6), and rabbits in the two treatment groups (OVX groups) were subjected to bilateral ovariectomy, while those in the control group were treated with sham operation. Twelve weeks later, we first examined expression levels of Sema3A in rabbits of the three groups. Titanium implants were implanted in rabbit proximal tibia. Specifically, rabbits in sham group were implanted with Matrigel, while the remaining in the OVX experimental group (OVX+Sema3A group) and OVX group were implanted with Matrigel containing Sema3A adeno-associated virus or empty vector, respectively. RESULTS: Histomorphometry results uncovered that rabbits in the OVX+Sema3A group had a significantly higher BIC compared with those of the OVX group on the 12th week of post-implantation. And compared with the OVX group, the maximum push-out force increased by 89.4%, and the stiffness increased by 39.4%, the toughness increased by 63.8% in the OVX+Sema3A group at 12 weeks. CONCLUSION: Sema3A has a positive effect on promoting early osseointegration of titanium implants in osteoporotic rabbits. CLINICAL RELEVANCE: Our research found that Sema3A can improve the osteogenic ability of bone marrow stem cells and promotes osseointegration during osteoporosis.
Asunto(s)
Implantes Dentales , Osteoporosis , Animales , Femenino , Conejos , Oseointegración , Osteoporosis/cirugía , Ovariectomía , Tibia , TitanioRESUMEN
BACKGROUND: Eukaryotic translation initiation factor 6 (eIF6), also known as integrin ß4 binding protein, is involved in ribosome formation and mRNA translation, acting as an anti-association factor. It is also essential for the growth and reproduction of cells, including tumor cells. Yet, its role in oral squamous cell carcinoma (OSCC) remains unclear. METHODS: The expression characteristics of eIF6 in 233 samples were comprehensively analyzed by immunohistochemical staining (IHC). Effects of eIF6 over-expression and knockdown on cell proliferation, migration and invasion were determined by CCK-8, wound healing and Transwell assays. Western blot, immunofluorescence (IF) and co-immunoprecipitation (co-IP) were performed for mechanical verification. RESULTS: We found that cytoplasmic eIF6 was abnormally highly expressed in OSCC tissues, and its expression was associated with tumor size and the clinical grade. Amplification of eIF6 promoted the growth, migration and invasion capabilities of OSCC cell lines in vitro and tumor growth in vivo. Through Western blot analysis, we further discovered that eIF6 significantly promotes epithelial-mesenchymal transformation (EMT) in OSCC cells, while depletion of eIF6 can reverse this process. Mechanistically, eIF6 promoted tumor progression by activating the AKT signaling pathway. By performing co-immunoprecipitation, we discovered a direct interaction between endogenous eIF6 and AKT protein in the cytoplasm. CONCLUSION: These results demonstrated that eIF6 could be a new therapeutic target in OSCC, thus providing a new basis for the prognosis of OSCC patients in the future. Video abstract.
Asunto(s)
Proteínas Proto-Oncogénicas c-aktRESUMEN
AB38b is a novel biphenyl diester derivative synthesized in our laboratory, and it has been shown to improve the pathology of nephropathy and encephalopathy in diabetic mice. Glioblastoma (GBM) is the most lethal brain tumor, without effective drugs to date. The present study aims at investigating the role of AB38b in GBM growth and revealing the underlying molecular mechanisms. We found that AB38b administration showed a dose- and time-dependent inhibition on cell proliferation in multiple immortalized and primary GBM cell lines, but it had no significant effects on human astrocyte cell line. More importantly, AB38b blocked cell cycle progression, induced early apoptosis, decreased the activity of AKT/mTOR pathway, and increased the generation of reactive oxygen species (ROS) in GBM cells. Interestingly, antioxidant treatments could reverse the AB38b-mediated abovementioned effects; overexpression of constitutively active AKT could partially rescue the suppressive effects of Ab38b on GBM cell proliferation. In addition, AB38b administration inhibited the tumor growth, decreased the activity of AKT/mTOR pathway, and prolonged the survival time in GBM animal models, without any adverse influences on the important organs. These findings suggest that AB38b exerts anti-glioma activity via elevating the ROS generation followed by inhibiting the activity of AKT/mTOR pathway.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Inhibidores de Crecimiento/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Anciano , Animales , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Inhibidores de Crecimiento/química , Inhibidores de Crecimiento/uso terapéutico , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
MoS2/C nanocomposite coatings were deposited on a 304 stainless steel plate by unbalanced magnetron sputtering from carbon and molybdenum disulfide targets, and the target current of MoS2 was varied to prepare for coating with different carbon contents. The mechanical and tribological properties of the MoS2/C nanocomposite coating with different carbon contents were studied using a low-velocity impact wear machine based on kinetic energy control, and the substrate was used as the comparison material. The atomic content ratio of Mo to S in the MoS2/C coating prepared by unbalanced magnetron sputtering was approximately 1.3. The dynamic response and damage analysis revealed that the coating exhibited good impact wear resistance. Under the same experimental conditions, the wear depth of the MoS2/C coating was lower than that of the substrate, and the coating exhibited a different dynamic response process as the carbon content increased.
RESUMEN
Fungi are important drivers of soil biogeochemical cycles. However, the characteristics of fungal community structures and functional groups within karst area (KA) soils remain understudied. Top soil samples were collected from paddy fields within a KA and non-karst area (NKA) containing red soil, in the Maocun karst experimental site of Guilin. The fungal community structure was analyzed via high-throughput sequencing, and FUNGuild was used to predict the function of fungi. The average relative abundance of Mucormycota in KA was 4.87%, which was significantly lower than that in NKA (29.92%); The average relative abundance of Mortierellomycetes in KA was 3.36%, which was significantly lower than that in NKA (29.15%). However, in KA, the average relative abundances of Glomeromycetes, Chytridiomycetes, and Exobasidiomycetes were 0.91%, 0.98%, and 0.23%, respectively, significantly higher than those in NKA (0.47%, 0.28%, and 0.04%). In KA, the average relative abundances of Ramophialophora and Emericellopsis were 2.39% and 1.25%, respectively, significantly higher than those in NKA (0.05% and 0.09%). However, the average relative abundance of Mortierella was 3.04% in KA, which was lower than that in NKA (28.34%). KA contained 32 dominant OTUs, including OTU141, 99, and 192. There was more connectivity between OTU69 (Emericellopsis terricola) and OTU138 (Westerdykella globosa) with the cation exchange capacity (CEC), exchangeable Ca2+, and total phosphorus (TP) in the correlation network. In KA, the average abundances of symbiotroph and pathotroph-saprotroph fungi were 1.29% and 1.50%, respectively, significantly higher than those in NKA (0.08% and 0.09%). The average abundance of the saprotroph-symbiotroph fungi in KA was 10.81%, which was significantly lower than that in NKA (63.69%). In KA, dung saprotroph-wood saprotroph fungi were dominant, with an abundance of 9.73%, whereas in NKA, endophyte-litter saprotroph-soil saprotroph-undefined saprotroph fungi were dominant, with an abundance of 45.93%. The above results suggest that the soil factors of KA, such as CEC, exchangeable Ca2+, and TP, alter the structures and functions of fungi.