Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Burns Trauma ; 12: tkae035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855574

RESUMEN

Background: Ensuring the survival of the distal end of a random flap during hypoperfusion (ischaemia) is difficult in clinical practice. Effective prevention of programmed cell death is a potential strategy for inhibiting ischaemic flap necrosis. The activation of stimulator of interferon genes (STING) pathway promotes inflammation and leads to cell death. The epidermal growth factor family member neuregulin-1 (NRG1) reduces cell death by activating the protein kinase B (AKT) signalling pathway. Moreover, AKT signalling negatively regulates STING activity. We aimed to verify the efficacy of NRG1 injection in protecting against flap necrosis. Additionally, we investigated whether NRG1 effectively enhances ischemic flap survival by inhibiting pyroptosis and necroptosis through STING suppression. Methods: A random-pattern skin flap model was generated on the backs of C57BL/6 mice. The skin flap survival area was determined. The blood supply and vascular network of the flap was assessed by laser Doppler blood flow analysis. Cluster of differentiation 34 immunohistochemistry (IHC) and haematoxylin and eosin (H&E) staining of the flap sections revealed microvessels. Transcriptome sequencing analysis revealed the mechanism by which NRG1 promotes the survival of ischaemic flaps. The levels of angiogenesis, oxidative stress, necroptosis, pyroptosis and indicators associated with signalling pathways in flaps were examined by IHC, immunofluorescence and Western blotting. Packaging adeno-associated virus (AAV) was used to activate STING in flaps. Results: NRG1 promoted the survival of ischaemic flaps. An increased subcutaneous vascular network and neovascularization were found in ischaemic flaps after the application of NRG1. Transcriptomic gene ontology enrichment analysis and protein level detection indicated that necroptosis, pyroptosis and STING activity were reduced in the NRG1 group. The phosphorylation of AKT and forkhead box O3a (FOXO3a) were increased after NRG1 treatment. The increased expression of STING in flaps induced by AAV reversed the therapeutic effect of NRG1. The ability of NRG1 to phosphorylate AKT-FOXO3a, inhibit STING and promote flap survival was abolished after the application of the AKT inhibitor MK2206. Conclusions: NRG1 inhibits pyroptosis and necroptosis by activating the AKT-FOXO3a signalling pathway to suppress STING activation and promote ischaemic flap survival.

2.
Mol Neurobiol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888836

RESUMEN

Lysosomes play a crucial role in various intracellular pathways as their final destination. Various stressors, whether mild or severe, can induce lysosomal membrane permeabilization (LMP), resulting in the release of lysosomal enzymes into the cytoplasm. LMP not only plays a pivotal role in various cellular events but also significantly contributes to programmed cell death (PCD). Previous research has demonstrated the participation of LMP in central nervous system (CNS) injuries, including traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid hemorrhage (SAH), and hypoxic-ischemic encephalopathy (HIE). However, the mechanisms underlying LMP in CNS injuries are poorly understood. The occurrence of LMP leads to the activation of inflammatory pathways, increased levels of oxidative stress, and PCD. Herein, we present a comprehensive overview of the latest findings regarding LMP and highlight its functions in cellular events and PCDs (lysosome-dependent cell death, apoptosis, pyroptosis, ferroptosis, and autophagy). In addition, we consolidate the most recent insights into LMP in CNS injury by summarizing and exploring the latest advances. We also review potential therapeutic strategies that aim to preserve LMP or inhibit the release of enzymes from lysosomes to alleviate the consequences of LMP in CNS injury. A better understanding of the role that LMP plays in CNS injury may facilitate the development of strategic treatment options for CNS injury.

3.
J Nanobiotechnology ; 22(1): 333, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877492

RESUMEN

In the realm of large-area trauma flap transplantation, averting ischaemic necrosis emerges as a pivotal concern. Several key mechanisms, including the promotion of angiogenesis, the inhibition of oxidative stress, the suppression of cell death, and the mitigation of inflammation, are crucial for enhancing skin flap survival. Apoptotic bodies (ABs), arising from cell apoptosis, have recently emerged as significant contributors to these functions. This study engineered three-dimensional (3D)-ABs using tissue-like mouse adipose-derived stem cells (mADSCs) cultured in a 3D environment to compare their superior biological effects against 2D-ABs in bolstering skin flap survival. The findings reveal that 3D-ABs (85.74 ± 4.51) % outperform 2D-ABs (76.48 ± 5.04) % in enhancing the survival rate of ischaemic skin flaps (60.45 ± 8.95) % (all p < 0.05). Mechanistically, they stimulated angiogenesis, mitigated oxidative stress, suppressed apoptosis, and facilitated the transition of macrophages from M1 to M2 polarization (all p < 0.05). A comparative analysis of microRNA (miRNA) profiles in 3D- and 2D-ABs identified several specific miRNAs (miR-423-5p-up, miR30b-5p-down, etc.) with pertinent roles. In summary, ABs derived from mADSCs cultured in a 3D spheroid-like arrangement exhibit heightened biological activity compared to those from 2D-cultured mADSCs and are more effective in promoting ischaemic skin flap survival. These effects are attributed to their influence on specific miRNAs.


Asunto(s)
Tejido Adiposo , Apoptosis , Técnicas de Cultivo de Célula , Isquemia , Células Madre , Células Cultivadas , Humanos , Animales , Ratones , Células Madre/citología , Células Madre/metabolismo , Masculino , Ratones Endogámicos C57BL , Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Isquemia/genética , Isquemia/patología , Hipoxia de la Célula , Supervivencia Celular , MicroARNs/genética , Estrés Oxidativo , Neovascularización Patológica , Perfilación de la Expresión Génica
4.
J Agric Food Chem ; 72(26): 14727-14746, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38907713

RESUMEN

Background: Following spinal cord injury (SCI), autophagy plays a positive role in neuronal protection, whereas pyroptosis triggers an inflammatory response. Ginsenoside-Rh2 (GRh2), known for its neuroprotective effects, is considered a promising drug. However, the exact molecular mechanisms underlying these protective effects remain unclear. Aim of the Study: Explore the therapeutic value of GRh2 in SCI and its potential mechanisms of action. Materials and Methods: An SCI mouse model was established, followed by random grouping and drug treatments under different conditions. Subsequently, the functional recovery of SCI mice after GRh2 treatment was assessed using hematoxylin and eosin, Masson's trichrome, and Nissl staining, footprint analysis, Basso Mouse Scale scoring, and inclined plane tests. The expression levels of relevant indicators in the mice were detected using Western blotting, immunofluorescence, and a quantitative polymerase chain reaction. Network pharmacology analysis was used to identify the relevant signaling pathways through which GRh2 exerts its therapeutic effects. Results: GRh2 promoted functional recovery after SCI. GRh2 significantly inhibits pyroptosis by enhancing autophagy in SCI mice. Simultaneously, the neuroprotective effect of GRh2, achieved through the inhibition of pyroptosis, is partially reversed by 3-methyladenine, an autophagy inhibitor. Additionally, the increase in autophagy induced by GRh2 is mediated by the promotion of transcription factor EB (TFEB) nuclear translocation and dephosphorylation. Partial attenuation of the protective effects of GRh2 was observed after TFEB knockdown. Additionally, GRh2 can modulate the activity of TFEB in mice post-SCI through the EGFR-MAPK signaling pathway, and NSC228155 (an EGFR activator) can partially reverse the effect of GRh2 on the EGFR-MAPK signaling pathway. Conclusions: GRh2 improves functional recovery after SCI by upregulating TFEB-mediated autophagic flux and inhibiting pyroptosis, indicating its potential clinical applicability.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Ginsenósidos , Recuperación de la Función , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/genética , Ginsenósidos/farmacología , Ginsenósidos/administración & dosificación , Autofagia/efectos de los fármacos , Ratones , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Recuperación de la Función/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Masculino , Modelos Animales de Enfermedad
5.
J Adv Res ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38704090

RESUMEN

BACKGROUND: Central nervous system (CNS) injury causes severe organ damage due to both damage resulting from the injury and subsequent cell death. However, there are currently no effective treatments for countering the irreversible loss of cell function. Parthanatos is a poly (ADP-ribose) polymerase 1 (PARP-1)-dependent form of programmed cell death that is partly responsible for neural cell death. Consequently, the mechanism by which parthanatos promotes CNS injury has attracted significant scientific interest. AIM OF REVIEW: Our review aims to summarize the potential role of parthanatos in CNS injury and its molecular and pathophysiological mechanisms. Understanding the role of parthanatos and related molecules in CNS injury is crucial for developing effective treatment strategies and identifying important directions for future in-depth research. KEY SCIENTIFIC CONCEPTS OF REVIEW: Parthanatos (from Thanatos, the personification of death according to Greek mythology) is a type of programmed cell death that is initiated by the overactivation of PARP-1. This process triggers a cascade of reactions, including the accumulation of poly(ADP-ribose) (PAR), the nuclear translocation of apoptosis-inducing factor (AIF) after its release from mitochondria, and subsequent massive DNA fragmentation caused by migration inhibitory factor (MIF) forming a complex with AIF. Secondary molecular mechanisms, such as excitotoxicity and oxidative stress-induced overactivation of PARP-1, significantly exacerbate neuronal damage following initial mechanical injury to the CNS. Furthermore, parthanatos is not only associated with neuronal damage but also interacts with various other types of cell death. This review focuses on the latest research concerning the parthanatos cell death pathway, particularly considering its regulatory mechanisms and functions in CNS damage. We highlight the associations between parthanatos and different cell types involved in CNS damage and discuss potential therapeutic agents targeting the parthanatos pathway.

6.
Adv Sci (Weinh) ; 11(24): e2307238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639443

RESUMEN

Preventing and treating avascular necrosis at the distal end of the flaps are critical to surgery success, but current treatments are not ideal. A recent study shows that apoptotic bodies (ABs) generated near the site of apoptosis can be taken up and promote cell proliferation. The study reveals that ABs derived from fibroblast-like cells in the subcutaneous connective tissue (FSCT cells) of skin flaps promoted ischaemic flap survival. It is also found that ABs inhibited cell death and oxidative stress and promoted M1-to-M2 polarization in macrophages. Transcriptome sequencing and protein level testing demonstrated that ABs promoted ischaemic flap survival in endothelial cells and macrophages by inhibiting ferroptosis via the KEAP1-Nrf2 axis. Furthermore, microRNA (miR) sequencing data and in vitro and in vivo experiments demonstrated that ABs inhibited KEAP1 by delivering miR-339-5p to exert therapeutic effects. In conclusion, FSCT cell-derived ABs inhibited ferroptosis, promoted the macrophage M1-to-M2 transition via the miR-339-5p/KEAP1/Nrf2 axis and promoted ischaemic flap survival. These results provide a potential therapeutic strategy to promote ischaemic flap survival by administering ABs.


Asunto(s)
Ferroptosis , Fibroblastos , Proteína 1 Asociada A ECH Tipo Kelch , MicroARNs , Factor 2 Relacionado con NF-E2 , Colgajos Quirúrgicos , Animales , Ratones , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ferroptosis/genética , MicroARNs/genética , MicroARNs/metabolismo , Fibroblastos/metabolismo , Modelos Animales de Enfermedad , Isquemia/metabolismo , Isquemia/genética , Masculino , Apoptosis/genética , Tejido Conectivo/metabolismo , Transducción de Señal/genética
7.
Adv Healthc Mater ; 13(12): e2303462, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38243745

RESUMEN

Oxidative stress (OS) is one of the crucial molecular events of secondary spinal cord injury (SCI). Basic fibroblast growth factor (bFGF) is a multipotent cell growth factor with an anti-oxidant effect. However, bFGF has a short half-life in vivo, which limits its therapeutic application. Biodegradable polymers with excellent biocompatibility have been recently applied in SCI. The negative aspect is that polymers cannot provide a significant therapeutic effect. Betulinic acid (BA), a natural anti-inflammatory compound, has been polymerized into poly (betulinic acid) (PBA) to serve as a drug carrier for bFGF. This study explores the therapeutic effects and underlying molecular mechanisms of PBA nanoparticles (NPs) loaded with bFGF (PBA-bFGF NPs) in SCI. Results show that PBA-bFGF NPs produce remarkable biocompatibility in vivo and in vitro. The results also demonstrate that local delivery of PBA-bFGF NPs enhances motor function recovery, inhibits OS, mitigates neuroinflammation, and alleviates neuronal apoptosis following SCI. Furthermore, the results indicate that local delivery of PBA-bFGF NPs activates the nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling pathway following SCI. In summary, results suggest that local delivery of PBA-bFGF NPs delivers potential therapeutic advantages in the treatment and management of SCI.


Asunto(s)
Ácido Betulínico , Factor 2 de Crecimiento de Fibroblastos , Nanopartículas , Traumatismos de la Médula Espinal , Animales , Masculino , Ratas , Apoptosis/efectos de los fármacos , Ácido Betulínico/química , Portadores de Fármacos/química , Factor 2 de Crecimiento de Fibroblastos/administración & dosificación , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/farmacología , Nanopartículas/química , Nanopartículas/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Polímeros/química , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico
8.
Eur Spine J ; 33(3): 1069-1080, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246903

RESUMEN

PURPOSE: To compare the clinical outcomes and radiographic outcomes of cortical bone trajectory (CBT) and traditional trajectory (TT) pedicle screw fixation in patients treated with single-level transforaminal lumbar interbody fusion (TLIF). METHODS: This trial included a total of 224 patients with lumbar spine disease who required single-level TLIF surgery. Patients were randomly assigned to the CBT and TT groups at a 1:1 ratio. Demographics and clinical and radiographic data were collected to evaluate the efficacy and safety of CBT and TT screw fixation in TLIF. RESULTS: The baseline characteristic data were similar between the CBT and TT groups. Back and leg pain for both the CBT and TT groups improved significantly from baseline to 24 months postoperatively. The CBT group experienced less pain than the TT group at one week postoperatively. The postoperative radiographic results showed that the accuracy of screw placement was significantly increased in the CBT group compared with the TT group (P < 0.05). The CBT group had a significantly lower rate of FJV than the TT group (P < 0.05). In addition, the rate of fusion and the rate of screw loosening were similar between the CBT and TT groups according to screw loosening criteria. CONCLUSION: This prospective, randomized controlled analysis suggests that clinical outcomes and radiographic characteristics, including fusion rates and caudal screw loosening rates, were comparable between CBT and TT screw fixation. Compared with the TT group, the CBT group showed advantages in the accuracy of screw placement and the FJV rate. CLINICAL TRIALS REGISTRATION: This trial has been registered at the US National Institutes of Health Clinical Trials Registry: NCT03105167.


Asunto(s)
Tornillos Pediculares , Fusión Vertebral , Humanos , Tornillos Pediculares/efectos adversos , Fusión Vertebral/métodos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Estudios Prospectivos , Resultado del Tratamiento , Hueso Cortical/diagnóstico por imagen , Hueso Cortical/cirugía , Dolor/etiología
9.
Mol Neurobiol ; 61(1): 55-73, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37581847

RESUMEN

Spinal cord injury (SCI) is a severe medical condition with lasting effects. The efficacy of numerous clinical treatments is hampered by the intricate pathophysiological mechanism of SCI. Fibroblast growth factor 18 (FGF-18) has been found to exert neuroprotective effects after brain ischaemia, but its effect after SCI has not been well explored. The aim of the present study was to explore the therapeutic effect of FGF-18 on SCI and the related mechanism. In the present study, a mouse model of SCI was used, and the results showed that FGF-18 may significantly affect functional recovery. The present findings demonstrated that FGF-18 directly promoted functional recovery by increasing autophagy and decreasing pyroptosis. In addition, FGF-18 increased autophagy, and the well-known autophagy inhibitor 3-methyladenine (3MA) reversed the therapeutic benefits of FGF-18 after SCI, suggesting that autophagy mediates the therapeutic effects of FGF-18 on SCI. A mechanistic study revealed that after stimulation of the protein kinase B (AKT)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway, the FGF-18-induced increase in autophagy was mediated by the dephosphorylation and nuclear translocation of transcription factor E3 (TFE3). Together, these findings indicated that FGF-18 is a robust autophagy modulator capable of accelerating functional recovery after SCI, suggesting that it may be a promising treatment for SCI in the clinic.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Proteínas Proto-Oncogénicas c-akt , Traumatismos de la Médula Espinal , Ratas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piroptosis , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Autofagia
10.
Br J Pharmacol ; 181(7): 1068-1090, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37850255

RESUMEN

BACKGROUND AND PURPOSE: Ischaemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which presents a challenge in achieving satisfactory therapeutic outcomes. Previous studies showed that cathelicidin-BF (BF-30) protects tissues from I/R injury. In this investigation, BF-30 was synthesized and its role and mechanism in promoting survival of I/R-injured skin flaps explored. EXPERIMENTAL APPROACH: Survival rate analysis and laser Doppler blood flow analysis were used to evaluate I/R-injured flap viability. Western blotting, immunofluorescence, TdT-mediated dUTP nick end labelling (TUNEL) and dihydroethidium were utilized to examine the levels of apoptosis, pyroptosis, oxidative stress, transcription factor EB (TFEB)-mediated autophagy and molecules related to the adenosine 5'-monophosphate-activated protein kinase (AMPK)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway. KEY RESULTS: The outcomes revealed that BF-30 enhanced I/R-injured island skin flap viability. Autophagy, oxidative stress, pyroptosis and apoptosis were related to the BF-30 capability to enhance I/R-injured flap survival. Improved autophagy flux and tolerance to oxidative stress promoted the inhibition of apoptosis and pyroptosis in vascular endothelial cells. Activation of TFEB increased autophagy and inhibited endothelial cell oxidative stress in I/R-injured flaps. A reduction in TFEB level led to a loss of the protective effect of BF-30, by reducing autophagy flux and increasing the accumulation of reactive oxygen species (ROS) in endothelial cells. Additionally, BF-30 modulated TFEB activity via the AMPK-TRPML1-calcineurin signalling pathway. CONCLUSION AND IMPLICATIONS: BF-30 promotes I/R-injured skin flap survival by TFEB-mediated up-regulation of autophagy and inhibition of oxidative stress, which may have possible clinical applications.


Asunto(s)
Piroptosis , Daño por Reperfusión , Humanos , Especies Reactivas de Oxígeno/metabolismo , Catelicidinas/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Células Endoteliales/metabolismo , Calcineurina/farmacología , Autofagia , Daño por Reperfusión/metabolismo , Factores de Transcripción
11.
Br J Pharmacol ; 181(5): 712-734, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37766498

RESUMEN

BACKGROUND AND PURPOSE: Autophagy is a protective factor for controlling neuronal damage, while necroptosis promotes neuroinflammation after spinal cord injury (SCI). DADLE (D-Ala2 , D-Leu5 ]-enkephalin) is a selective agonist for delta (δ) opioid receptor and has been identified as a promising drug for neuroprotection. The aim of this study was to investigate the mechanism/s by which DADLE causes locomotor recovery following SCI. EXPERIMENTAL APPROACH: Spinal cord contusion model was used and DADLE was given by i.p. (16 mg·kg-1 ) in mice for following experiments. Motor function was assessed by footprint and Basso mouse scale (BMS) score analysis. Western blotting used to evaluate related protein expression. Immunofluorescence showed the protein expression in each cell and its distribution. Network pharmacology analysis was used to find the related signalling pathways. KEY RESULTS: DADLE promoted functional recovery after SCI. In SCI model of mice, DADLE significantly increased autophagic flux and inhibited necroptosis. Concurrently, DADLE restored autophagic flux by decreasing lysosomal membrane permeabilization (LMP). Additionally, chloroquine administration reversed the protective effect of DADLE to inhibit necroptosis. Further analysis showed that DADLE decreased phosphorylated cPLA2 , overexpression of cPLA2 partially reversed DADLE inhibitory effect on LMP and necroptosis, as well as the promotion autophagy. Finally, AMPK/SIRT1/p38 pathway regulating cPLA2 is involved in the action DADLE on SCI and naltrindole inhibited DADLE action on δ receptor and on AMPK signalling pathway. CONCLUSION AND IMPLICATION: DADLE causes its neuroprotective effects on SCI by promoting autophagic flux and inhibiting necroptosis by decreasing LMP via activating δ receptor/AMPK/SIRT1/p38/cPLA2 pathway.


Asunto(s)
Leucina Encefalina-2-Alanina , Traumatismos de la Médula Espinal , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Leucina Encefalina-2-Alanina/metabolismo , Leucina Encefalina-2-Alanina/farmacología , Lisosomas/metabolismo , Fosfolipasas/metabolismo , Receptores Opioides delta/metabolismo , Recuperación de la Función , Sirtuina 1/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo
12.
Free Radic Biol Med ; 212: 133-148, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38142951

RESUMEN

Spinal cord injury (SCI) presents profound ramifications for patients, leading to diminished motor and sensory capabilities distal to the lesion site. Once SCI occurs, it not only causes great physical and psychological problems for patients but also imposes a heavy economic burden. Ezrin is involved in various cellular processes, including signal transduction, cell death, inflammation, chemotherapy resistance and the stress response. However, whether Ezrin regulates functional repair after SCI and its underlying mechanism has not been elucidated. Here, our results showed that there is a marked augmentation of Ezrin levels within neurons and Ezrin inhibition markedly diminished glial scarring and bolstered functional recuperation after SCI. RNA sequencing indicated the potential involvement of pyroptosis, oxidative stress and autophagy in the enhancement of functional recovery upon reduced Ezrin expression. Moreover, the inhibition of Ezrin expression curtailed pyroptosis and oxidative stress by amplifying autophagy. Our studies further demonstrated that Ezrin inhibition promoted autophagy by increasing TFEB activity via the Akt-TRPML1-calcineurin pathway. Finally, we concluded that inhibiting Ezrin expression alleviates pyroptosis and oxidative stress by enhancing TFEB-driven autophagy, thereby promoting functional recovery after SCI, which may be a promising therapeutic target for SCI treatment.


Asunto(s)
Proteínas del Citoesqueleto , Piroptosis , Traumatismos de la Médula Espinal , Humanos , Calcineurina/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Estrés Oxidativo/fisiología , Autofagia
13.
Mol Neurobiol ; 60(12): 6789-6813, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37482599

RESUMEN

CNS (central nervous system) trauma, which is classified as SCI (spinal cord injury) and TBI (traumatic brain injury), is gradually becoming a major cause of accidental death and disability worldwide. Many previous studies have verified that the pathophysiological mechanism underlying cell death and the subsequent neuroinflammation caused by cell death are pivotal factors in the progression of CNS trauma. Simultaneously, EVs (extracellular vesicles), membrane-enclosed particles produced by almost all cell types, have been proven to mediate cell-to-cell communication, and cell death involves complex interactions among molecules. EVs have also been proven to be effective carriers of loaded bioactive components to areas of CNS trauma. Therefore, EVs are promising therapeutic targets to cure CNS trauma. However, the link between EVs and various types of cell death in the context of CNS trauma remains unknown. Therefore, in this review, we summarize the mechanism underlying EV effects, the relationship between EVs and cell death and the pathophysiology underlying EV effects on the CNS trauma based on information in published papers. In addition, we discuss the prospects of applying EVs to the CNS as feasible therapeutic strategies for CNS trauma in the future.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades del Sistema Nervioso Central , Vesículas Extracelulares , Traumatismos del Sistema Nervioso , Humanos , Sistema Nervioso Central , Vesículas Extracelulares/metabolismo , Traumatismos del Sistema Nervioso/terapia , Traumatismos del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso Central/metabolismo , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/metabolismo , Muerte Celular
14.
Neural Regen Res ; 18(12): 2733-2742, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37449638

RESUMEN

Spinal cord injury is a challenge in orthopedics because it causes irreversible damage to the central nervous system. Therefore, early treatment to prevent lesion expansion is crucial for the management of patients with spinal cord injury. Bexarotene, a type of retinoid, exerts therapeutic effects on patients with cutaneous T-cell lymphoma and Parkinson's disease. Bexarotene has been proven to promote autophagy, but it has not been used in the treatment of spinal cord injury. To investigate the effects of bexarotene on spinal cord injury, we established a mouse model of T11-T12 spinal cord contusion and performed daily intraperitoneal injection of bexarotene for 5 consecutive days. We found that bexarotene effectively reduced the deposition of collagen and the number of pathological neurons in the injured spinal cord, increased the number of synapses of nerve cells, reduced oxidative stress, inhibited pyroptosis, promoted the recovery of motor function, and reduced death. Inhibition of autophagy with 3-methyladenine reversed the effects of bexarotene on spinal cord injury. Bexarotene enhanced the nuclear translocation of transcription factor E3, which further activated AMP-activated protein kinase-S-phase kinase-associated protein 2-coactivator-associated arginine methyltransferase 1 and AMP-activated protein kinase-mammalian target of rapamycin signaling pathways. Intravenous injection of transcription factor E3 shRNA or intraperitoneal injection of compound C, an AMP-activated protein kinase blocker, inhibited the effects of bexarotene. These findings suggest that bexarotene regulates nuclear translocation of transcription factor E3 through the AMP-activated protein kinase-S-phase kinase-associated protein 2-coactivator-associated arginine methyltransferase 1 and AMP-activated protein kinase-mammalian target of rapamycin signal pathways, promotes autophagy, decreases reactive oxygen species level, inhibits pyroptosis, and improves motor function after spinal cord injury.

15.
Redox Biol ; 64: 102767, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290302

RESUMEN

BACKGROUND: Necroptosis and pyroptosis, two types of proinflammatory programmed cell death, were recently found to play important roles in spinal cord injury (SCI). Moreover, cyclic helix B peptide (CHBP) was designed to maintain erythropoietin (EPO) activity and protect tissue against the adverse effects of EPO. However, the protective mechanism of CHBP following SCI is still unknown. This research explored the necroptosis- and pyroptosis-related mechanism underlying the neuroprotective effect of CHBP after SCI. METHODS: Gene Expression Omnibus (GEO) datasets and RNA sequencing were used to identify the molecular mechanisms of CHBP for SCI. A mouse model of contusion SCI was constructed, and HE staining, Nissl staining, Masson staining, footprint analysis and the Basso Mouse Scale (BMS) were applied for histological and behavioural analyses. qPCR, Western blot analysis, immunoprecipitation and immunofluorescence were utilized to analyse the levels of necroptosis, pyroptosis, autophagy and molecules associated with the AMPK signalling pathway. RESULTS: The results revealed that CHBP significantly improved functional restoration, elevated autophagy, suppressed pyroptosis, and mitigated necroptosis after SCI. 3-Methyladenine (3-MA), an autophagy inhibitor, attenuated these beneficial effects of CHBP. Furthermore, CHBP-triggered elevation of autophagy was mediated by the dephosphorylation and nuclear translocation of TFEB, and this effect was due to stimulation of the AMPK-FOXO3a-SPK2-CARM1 and AMPK-mTOR signalling pathways. CONCLUSION: CHBP acts as a powerful regulator of autophagy that improves functional recovery by alleviating proinflammatory cell death after SCI and thus might be a prospective therapeutic agent for clinical application.


Asunto(s)
Péptidos Cíclicos , Traumatismos de la Médula Espinal , Ratones , Animales , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Apoptosis , Transducción de Señal , Autofagia
16.
Theranostics ; 13(2): 810-832, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632211

RESUMEN

Background: Caloric restriction mimetics (CRMs) mimic the favourable effects of caloric restriction (CR) and have been shown to have therapeutic effects in neuroinflammatory disease. However, whether CRMs improve the functional recovery from spinal cord injury (SCI) and the underlying mechanism of action remain unclear. In this study, we used the CRMs 3,4-dimethoxychalcone (3,4-DC) to evaluate the therapeutic value of CRMs for SCI. Methods: HE, Masson and Nissl staining; footprint analysis; and the Basso mouse scale were used to determine the functional recovery from SCI after 3,4-DC treatment. RNA sequencing was used to identify the mechanisms of 3,4-DC in SCI. Western blotting, qPCR and immunofluorescence were used to detect the levels of pyroptosis, necroptosis, autophagy and the AMPK-TRPML1-calcineurin signalling pathway. We employed a dual-luciferase reporter assay in vitro and applied AAV vectors to inhibit TFEB in vivo to explore the mechanism of 3,4-DC. Results: 3,4-DC reduced glial scar area and motor neuron death and improved functional recovery after SCI. RNA-sequencing results indicated that oxidative stress, pyroptosis, necroptosis, and autophagy may be involved in the ability of 3,4-DC to improve functional recovery. Furthermore, 3,4-DC inhibited pyroptosis and necroptosis by enhancing autophagy. We also found that 3,4-DC enhances autophagy by promoting TFEB activity. A decrease in the TFEB level abolished the protective effect of 3,4-DC. In addition, 3,4-DC partially regulated TFEB activity through the AMPK-TRPML1-calcineurin signalling pathway. Conclusions: 3,4-DC promotes functional recovery by upregulating TFEB-mediated autophagy and inhibiting pyroptosis and necroptosis after SCI, which may have potential clinical application value.


Asunto(s)
Restricción Calórica , Necroptosis , Piroptosis , Traumatismos de la Médula Espinal , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Calcineurina/metabolismo , Necroptosis/efectos de los fármacos , Piroptosis/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología
17.
J Neuroinflammation ; 20(1): 6, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609266

RESUMEN

Spinal cord injury (SCI) is a devastating injury that may result in permanent motor impairment. The active ingredients of medications are unable to reach the affected area due to the blood‒brain barrier. Elamipretide (SS-31) is a new and innovative aromatic cationic peptide. Because of its alternating aromatic and cationic groups, it freely crosses the blood‒brain barrier. It is also believed to decrease inflammation and protect against a variety of neurological illnesses. This study explored the therapeutic value of SS-31 in functional recovery after SCI and its possible underlying mechanism. A spinal cord contusion injury model as well as the Basso Mouse Scale, footprint assessment, and inclined plane test were employed to assess how well individuals could function following SCI. The area of glial scarring, the number of dendrites, and the number of synapses after SCI were confirmed by HE, Masson, MAP2, and Syn staining. Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays were employed to examine the expression levels of pyroptosis-, autophagy-, lysosomal membrane permeabilization (LMP)- and MAPK signalling-related proteins. The outcomes showed that SS-31 inhibited pyroptosis, enhanced autophagy and attenuated LMP in SCI. Mechanistically, we applied AAV vectors to upregulate Pla2g4A in vivo and found that SS-31 enhanced autophagy and attenuated pyroptosis and LMP by inhibiting phosphorylation of cPLA2. Ultimately, we applied asiatic acid (a p38-MAPK agonist) to test whether SS-31 regulated cPLA2 partially through the MAPK-P38 signalling pathway. Our group is the first to suggest that SS-31 promotes functional recovery partially by inhibiting cPLA2-mediated autophagy impairment and preventing LMP and pyroptosis after SCI, which may have potential clinical application value.


Asunto(s)
Piroptosis , Traumatismos de la Médula Espinal , Ratones , Animales , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Lisosomas/metabolismo , Fosfolipasas A2 Citosólicas/metabolismo
18.
Neural Regen Res ; 18(2): 258-266, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35900400

RESUMEN

Central nervous system (CNS) trauma, including traumatic brain injury and spinal cord injury, has a high rate of disability and mortality, and effective treatment is currently lacking. Previous studies have revealed that neural inflammation plays a vital role in CNS trauma. As the initial enzyme in neuroinflammation, cytosolic phospholipase A2 (cPLA2) can hydrolyze membranous phosphatides at the sn-2 position in a preferential way to release lysophospholipids and ω3-polyunsaturated fatty acid dominated by arachidonic acid, thereby inducing secondary injuries. Although there is substantial fresh knowledge pertaining to cPLA2, in-depth comprehension of how cPLA2 participates in CNS trauma and the potential methods to ameliorate the clinical results after CNS trauma are still insufficient. The present review summarizes the latest understanding of how cPLA2 participates in CNS trauma, highlighting novel findings pertaining to how cPLA2 activation initiates the potential mechanisms specifically, neuroinflammation, lysosome membrane functions, and autophagy activity, that damage the CNS after trauma. Moreover, we focused on testing a variety of drugs capable of inhibiting cPLA2 or the upstream pathway, and we explored how those agents might be utilized as treatments to improve the results following CNS trauma. This review aimed to effectively understand the mechanism of cPLA2 activation and its role in the pathophysiological processes of CNS trauma and provide clarification and a new referential framework for future research.

20.
J Neuroinflammation ; 19(1): 242, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195926

RESUMEN

Stimulator of interferons genes (STING), which is crucial for the secretion of type I interferons and proinflammatory cytokines in response to cytosolic nucleic acids, plays a key role in the innate immune system. Studies have revealed the participation of the STING pathway in unregulated inflammatory processes, traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid haemorrhage (SAH) and hypoxic-ischaemic encephalopathy (HIE). STING signalling is markedly increased in CNS injury, and STING agonists might facilitate the pathogenesis of CNS injury. However, the effects of STING-regulated signalling activation in CNS injury are not well understood. Aberrant activation of STING increases inflammatory events, type I interferon responses, and cell death. cGAS is the primary pathway that induces STING activation. Herein, we provide a comprehensive review of the latest findings related to STING signalling and the cGAS-STING pathway and highlight the control mechanisms and their functions in CNS injury. Furthermore, we summarize and explore the most recent advances toward obtaining an understanding of the involvement of STING signalling in programmed cell death (autophagy, necroptosis, ferroptosis and pyroptosis) during CNS injury. We also review potential therapeutic agents that are capable of regulating the cGAS-STING signalling pathway, which facilitates our understanding of cGAS-STING signalling functions in CNS injury and the potential value of this signalling pathway as a treatment target.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Ferroptosis , Interferón Tipo I , Ácidos Nucleicos , Autofagia/fisiología , Citocinas/metabolismo , Humanos , Inflamación , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Necroptosis , Nucleotidiltransferasas/metabolismo , Piroptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...